

Effect of landscape structure on invasive spread: a spatially explicit perspective

International Pest Risk Research Group

Fort Collins, NC, 25-28 August 2015

A. Lustig¹ S. P. Worner¹

¹Bio-Protection Research Centre, Lincoln University, New Zealand

www.bioprotection

・ロト ・日下・・日下

Quantifying landscape patterns

Biological invasion

Future research

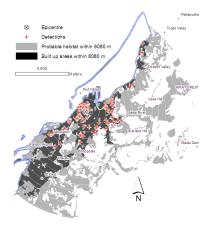
Acknowledgements

Supervision team

Assoc. Prof. Susan P. Worner Dr. Crile Doscher Dr. Daniel B. Stouffer Dr. Julien Cucherousset

Ecological informatics group, BPRC

Dr. Hossein Ali Narouei Khandan Mariona Roigé Marona Rovira Capdevila Dr. Senait D. Senay Ursula Torres

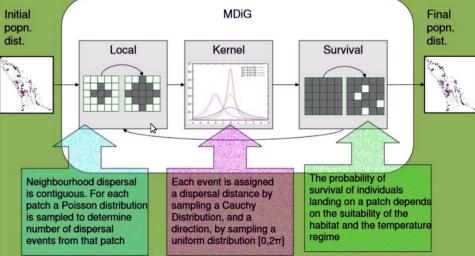

・ロト ・日下・ ・ ヨト

www.bioprotection.org.nz

Introduction	Quantifying landscape patterns	
•00000		

Future research

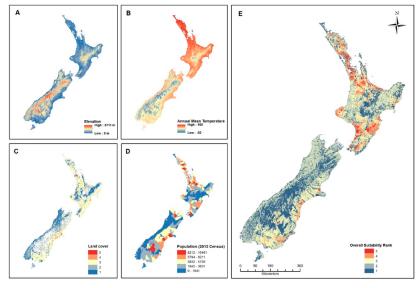
Spatio-temporal dynamics of spread


Senay et al. (2014) B3 Conference, Wellington, New Zealand

www.bioprotection.org.nz

< E

・ロト ・回ト ・ヨト


Introduction ○●○○○○		Quantifying landscape patterns		Future research 00
General	General dispersal framework			

Pitt et al., Ecol Appl (2009) - https://github.com/ferrouswheel/mdig

Introduction	Quantifying landscape patterns	

General dispersal framework

__ www.bioprotection.org.nz

<ロ> <四> <四> <四> <三</td>

Introduction	
000000	

General framework

Quantifying landscape patterns

Biological invasion

Future research

www.bioprotection.org.nz

Theoretical background

Species life history traits

Propagule pressure

Abiotic interactions and resource distribution

・ロト ・日下・・日下

Heterogeneous spatial distribution of invasive species

Lockwood, Wiley (2013)

General framework

Quantifying landscape patterns

Biological invasion

Future research

www.bioprotection.org.nz

Landscape structure shaping the process of invasion

Research question How abiotic variables and resource distribution influence establishment success and spread of invasive insects?

イロト イヨト イヨト イヨ

With, Conservation Biology (2002)

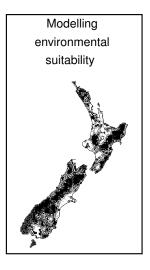
Introduction	
000000	

What do we already know?

- Urban landscape promote alien species establishment and spread (White et al. 2010)
- Urban forest, with large ratio of edge to interior habitat, are prime pathways from urban to natural area (Martin et al. 2009)
- Simplification of landscape increases the concentration of resources that are available to invasive pests (Robledo-Arnuncio et al. 2014)

but

- Small gradient of habitat complexity (e.g. patch shape, interpatch connectivity, habitat corridors or habitat aggregation)
- Insufficient or null replications across habitat
- Global synthesis of the effect of landscape structure on pest spread?


General framework

Quantifying landscape patterns

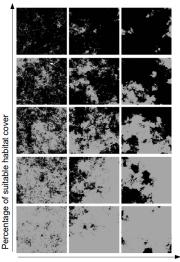
Biological invasion

Future research

Linking landscape structure to population dynamics

Landscape metrics

Lustig et al., 13th International Conference Autonomous Agents and Multiagent Systems, AAMAS (2014)


General framework

Quantifying landscape patterns

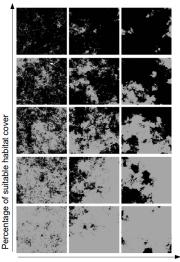
Biological invasion

Future research

Generating and quantifying landscape patterns

Spatial autocorrelation

McGarigal et al., FRAGSTATS v4, (2012) and Gardner, Springer-Verlag, New York (1999) www.bioprotection.org.nz


General framework

Quantifying landscape patterns

Biological invasion

Future research

Generating and quantifying landscape patterns

Spatial autocorrelation

Context

e.g. Distance to nearest suitable patch

Shape/complexity

e.g. Perimeter/ratio

Habitat size

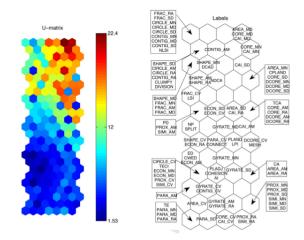
e.g. Suitable area

Habitat boundary

イロト イ部ト イヨト イヨト 三日

e.g. Edge density

McGarigal et al., FRAGSTATS v4, (2012) and Gardner, Springer-Verlag, New York (1999) www.bioprotection.org.nz


General framework

Quantifying landscape patterns

Biological invasion

Future research

Better understanding landscape metrics

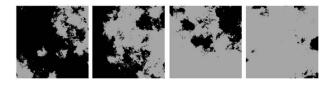
Lustig et al., *Ecological Indicators* (2014)

__ www.bioprotection.org.nz

< ロ > < 回 > < 回 > < 回 > < 回 >

Quantifying landscape patterns

Biological invasion


・ロト ・日下・・日下

Future research

Effect of spatial pattern on the process of invasion

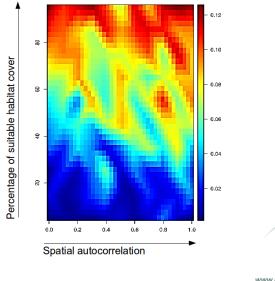
Local dispersal Long dispersal Rate of increase

Landscape

metrics

Probability of establishment and spread

Modular Dispersal in GIS - https://github.com/ferrouswheel/mdig


www.bioprotection.org.nz

< E

 Introduction
 General framework
 Quantifying landscape patterns
 Biological invasion
 Future res

 000000
 0
 00
 00
 00
 00
 00

Dispersal success as a function of spatial pattern

www.bioprotection.org.nz

< E

・ロト ・日下・・日下

Introduction	Quantifying landscape patterns	Biological inva
000000		000

asion

Role of landscape composition and configuration

Population density

- Landscape composition $27 \pm 0.7 \%$
- Aggregation index $10 \pm 5 \%$

Occupied area

- Landscape composition $14 \pm 4\%$
- Edge effect $11 \pm 2\%$
- Clumpiness $39 \pm 4 \%$

Rate of spread

Landscape composition $68 \pm 4\%$

Dispersal distance

- Landscape composition $98 \pm 4\%$
- Edge effect $12 \pm 2\%$
- Aggregation index $23 \pm 2 \%$

www.bioprotection.org イロト イヨト イヨト イヨ

Quantifying landscape patterns

Biological invasion

イロト イヨト イヨト イヨ

Future research ●○

Conclusion and future directions

Future directions

- Relative effect of spatial pattern, dispersal abilities, and propagule pressure on dispersal success
- Source of variation in the models

In a longer term

- Quickly assessing the spread risk of any invasive insects arriving in New Zealand (and USA!)
- Assessing and communicating about map uncertainty
- Developing specific model of spread (life strategies, directional dispersal, etc.)
- Testing management strategies

www.bioprotection.org.nz

General framework

Quantifying landscape patterns

Biological invasion

Future research

www.bioprotection.org

< E

・ロト ・日下・・日下

Thank you for your attention

Mathematics is biology's next microscope, only better. Conversely, mathematics will benefit increasingly from its involvement with biology.

- Joel E. Cohen