Optimizing the surveillance of crop pests through network models

Maggie Triska* and Michael Renton

Maggie.Triska@uwa.edu.au

THE UNIVERSITY OF Western Australia

Achieve International Excellence

Optimal Surveillance

(what's the best way to look for something you don't want to find)

Crop Pests

- Result in negative impacts
 - Food safety
 - Trade
 - Market access
 - Sustainability of plant industries

Surveillance

Early detection for rapid and effective response

Delineating the extent of an incursion
Proving area freedom to protect trade

Inform management of established pests

Optimization

- Number, location, frequency
 - Movement, different or new technologies
 - Cost
- Structural arrangement of the landscape
- Dispersal potential of the species

O nikola rahmé

Case Studies

Phylloxera and Grape Industry Board of South Australia, http://www.phylloxera.com.au/bio security/phylloxera/

Grape phylloxera, Daktulosphaira vitifoliae Fitch

Andrew Taylor, www.agric.wa.gov.au/potatoes/potato-cyst-nematode-western australia

Potato-cyst nematode,

Globodera rostochiensis

Sonya Broughton, https://www.agric.wa.gov.au/citrus/fruit-fly-western-australia

Mediterranean fruit fly, *Ceratitis capitata*

Networks and Crop Pests

- Improved management and surveillance of disease in livestock and nursery plants
- Difficult in crop systems

Landscape (state, county)

Local (within farm)

What are we doing different?

 Simulating spread at the landscape (area-area) and local (field-field) scales

• + Surveillance strategies over the network

Produce risk maps and estimate link transfer
 probabilities

 Provide tools to prioritize surveillance to achieve optimal and cost effective strategies

Potato-cyst nematode (PCN)

PCN - World Distribution

2015-03-13 (c) EPPO http://www.eppo.int

Australia

Network – Potato Production

PCN Spread Simulations

Surveillance Strategies

Quarantine - Field

- Random
- Sequential
- Distance based
- Network based

Quarantine - Area

- Distance based
- Network based

Surveillance Strategies

Targeted

- Infested areas and surrounding areas
- Infested areas and the periphery of the region

Spread + Surveillance

Year: 1

Probability of Infestation

Metrics

Highly connected nodes → feedback to surveillance

Random

Network based

Output

Detection vs infestation

Conclusions

- PCN
 - Quarantine is essential to slowing spread
 - Focussed surveillance (distance or network based) may improve standard surveillance
- Network analyses + crop pest surveillance?
 - Data availability
 - Improve with detailed data?
 - Computational issues

Next Steps

Detailed local spread

Individual farm locations; roads; waterways; linked properties

Grape Phylloxera

Mediterranean Fruit Fly

Thanks!

