

Pest risk mapping based on spatial and temporal distribution of production

Juha Tuomola¹, Hanna Huitu², and Salla Hannunen¹

¹ Finnish Food Safety Authority Evira
² Natural Resources Institute Finland

Aim

- Develop a simple methodology
- that ranks production locations of a crop species according to the probability of pest invasion
- based on the spatial distribution of the crop species during the past 5-10 years

 \rightarrow enables more efficient targeting of the plant health surveys

Framework

- Not pest specific crop specific!
- Based on multiyear spatial distribution of a crop species.
- Modelling is performed on a 0.5 × 0.5 km grid and the results are presented as cell-specific risk indices.
- Indices do not represent actual probabilities, but they allow comparison of the relative probabilities.

Assessed to each cell followingly

- 1. Probability of **entry**
- 2. Probability of **spread**
- 3. Probability of **survival**
- \rightarrow Probability of **invasion**

Assessed to each cell followingly

1. Probability of entry

- 2. Probability of **spread**
- 3. Probability of **survival**
- \rightarrow Probability of **invasion**

1) Relative probability of entry

to a cell is assumed to depend linearly on the cultivation area of the studied crop plant in that cell

1. Entry

Assessed to each cell followingly

1. Probability of entry

2. Probability of spread

- 3. Probability of **survival**
- \rightarrow Probability of **invasion**

2) Relative probability of spread

to the surrounding cells is assumed to be distance-dependent

Modeled with a Cauchy dispersal kernel

Assessed to each cell followingly

- 1. Probability of **entry**
- 2. Probability of **spread**
- 3. Probability of survival
- \rightarrow Probability of **invasion**

3) Relative probability of survival

in a cell is assumed to depend on the presence of the studied crop species in that cell

- If host plants are cultivated in the cell, the index remains unchanged
- If host plants are not cultivated in the cell, the index decreases according to a predetermined proportion

Assessed to each cell followingly

- 1. Probability of **entry**
- 2. Probability of **spread**
- 3. Probability of **survival**

→ Probability of **invasion**

Accumulation of the probability over the years

Uncertainty

Pest generic approach!

"fit for all purpose" parameters of spread and survival cannot be set

\rightarrow Simulation of

- Spread parameter (kernel smoothing) from a uniform distribution (0 0.5)
- Survival parameter from a uniform distribution (0 0.5)
- \rightarrow a distribution of risk index values for each cell

Ranking of the cells

- Possible to rank the cells based on the average, or other summary metric
- Yet, if we whish the ranks to represent real differences in the indices, the whole distribution must be used in the ranking by stochastic ordering techniques

Potato as an example (2011-2015)

- Spatial and temporal distribution of places of production is used to map the invasion probability of pests with risk indices
- Indices do not represent actual probabilities, but they allow comparison of the relative probabilities
- Simple methodology for a practical problem, i.e. targeting phytosanitary surveys

