

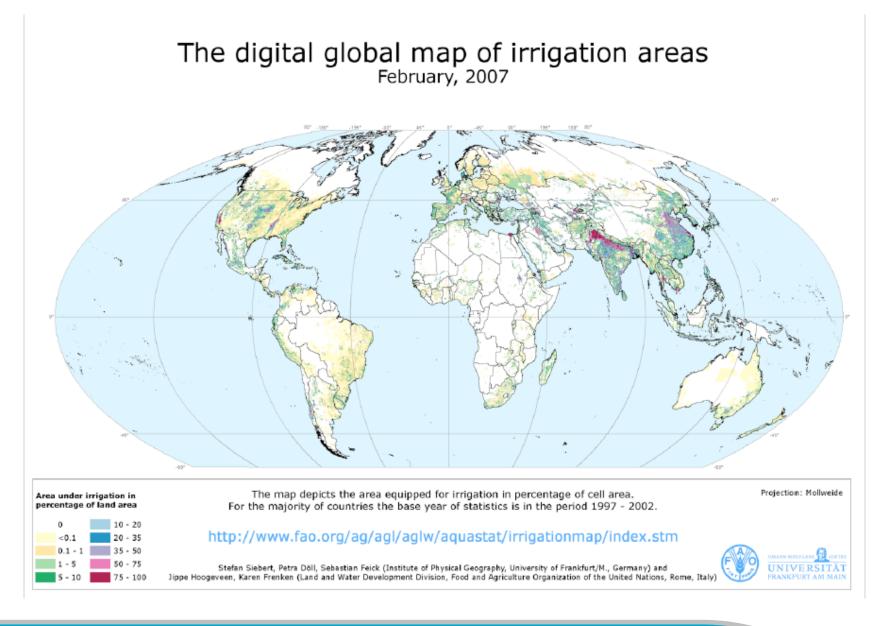
Applying new tools in CLIMEX to explore parameter sensitivity, model uncertainty and inter-annual variation in climate suitability The potential distribution of *Chilo partellus*, including the effects of irrigation Darren Kriticos, Tania Yonow, Noboru Ota, Johnnie Van Den Berg and William Hutchison

August 2016

HEALTH & BIOSECURITY www.csiro.au

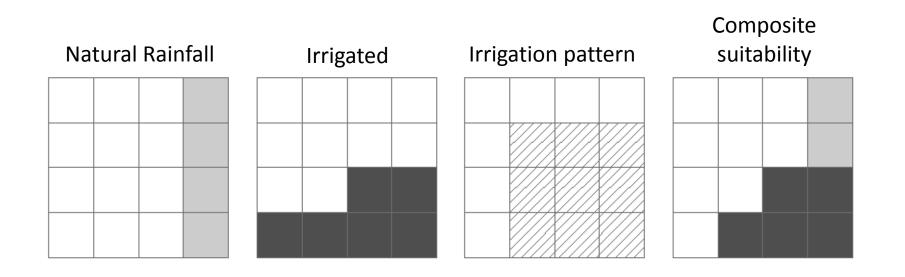
Chilo partellus

- Major crop pest
- Originally from Asia and Africa
- Recently spread to the Moditorranean region

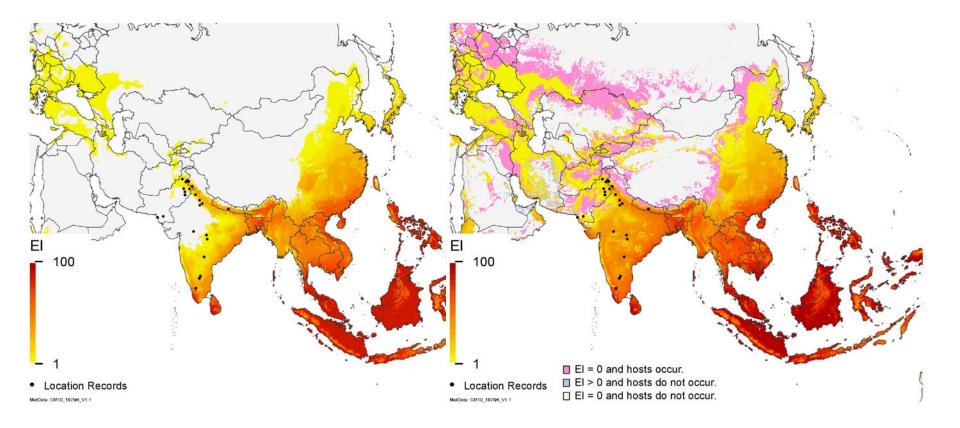


Considering irrigation for crop pest niche modelling

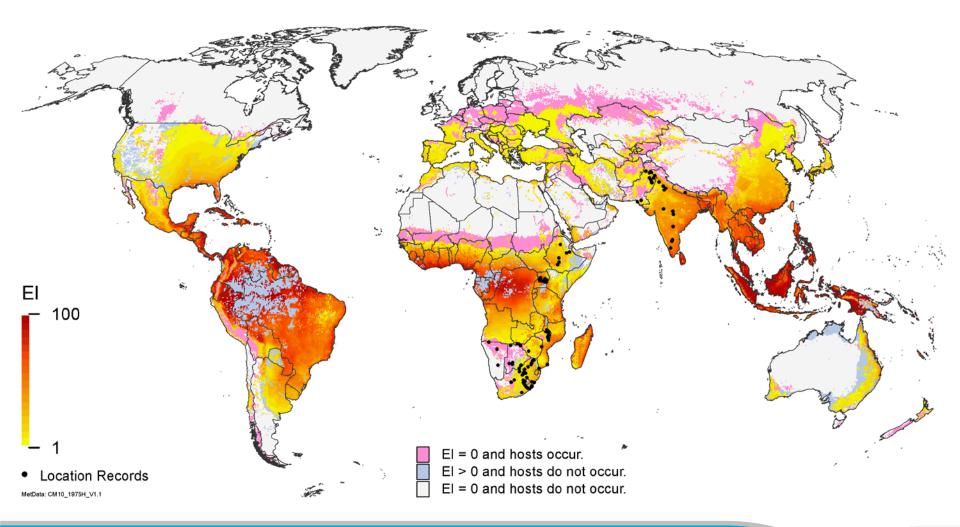
- Many (perhaps most) agricultural crops are irrigated somewhere in their range
- The cardinal assumption in correlative species distribution modelling is that the species is at equilibrium with its environment
- The fine print...
 - The environment is represented by bioclim variables
 - The bioclim variables are built using *natural rainfall* climate variables
- What is the effect of building a model with distribution points collected from a mixture of irrigated and non-irrigated sites?
 - Model parameters are distorted, losing meaning and interpretability
 - Model skill is reduced, with *specificity* sacrificed in order to maintain *sensitivity*
 - All arid regions become suitable, even if they are not irrigated.


Including Irrigation in CLIMEX Niche Models

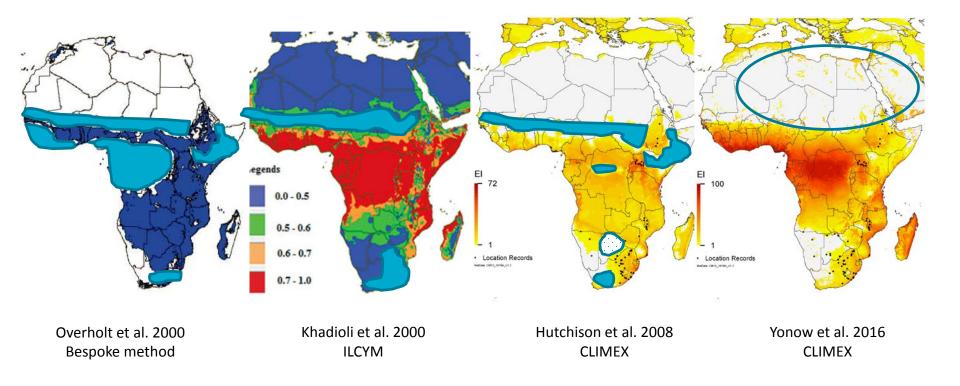
- Collate distribution data
- Fit initial soil moisture and temperature parameters using biologically reasonable values
- Assess fit
- Identify outlying points
- Explore using Google Earth or similar, identify evidence of irrigation
- Apply an irrigation scenario (2.5 mm day-1 of top-up irrigation is usually satisfactory)
- Combine results of irrigated and natural models using the GMIA dataset


Composite niche maps

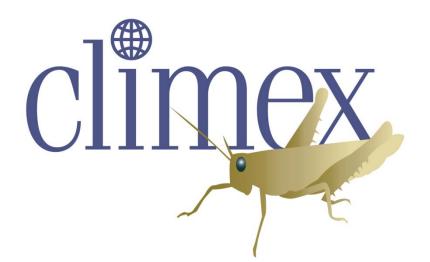
- Use spatial intersection to create a composite risk
- Risk(Y) = Max(Y_I, Y_N | irrigation)
- If irrigation is present, then the risk is the highest value of the two scenarios, otherwise it is the natural rainfall value.



Chilo partellus potential persistence in Asia



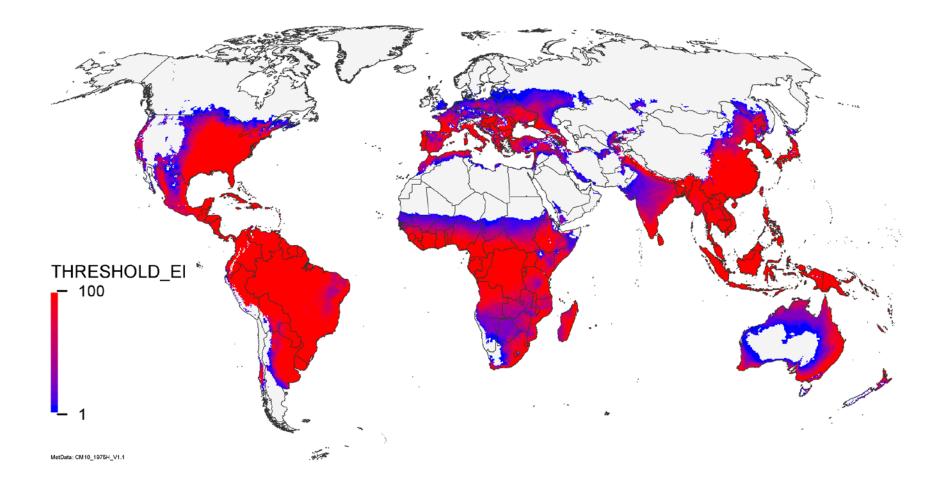
Global threat of Chilo partellus


Results compared

Sensitivity and Uncertainty

- More frequent calls in the literature to undertake some form of uncertainty analysis
 - Venette et al. 2010 Roadmap paper
- CLIMEX Version 4 provides tools to automate the analyses

Sensitivity vs Uncertainty


- Parameter sensitivity is the strength of the effect of each parameter on state variables
 - Adjust each parameter and assess change in state variables
 - Produces a table of sensitivity results
 - Identifies which variables we need to consider carefully
 - Sensitive variables that we are poorly confident about = high concern
- Uncertainty is an estimate of incertitude in the *results* of the model
 - Apply parametric uncertainty
 - Latin hyper-cube sampling
 - Produces an agreement map

Sensitivity analysis

Parameter	Mnemonic	Parameter Values			Range		Core	Growth Variables			Stress Variables			
		Low	Default	High	Change (%)	El Change	Distribution Change (%)	MI Change	TI Change	GI Change	CS Change	DS Change	HS Change	WS Change
Dry Stress Threshold	SMDS	0	0.1	0.2	7.02	10.09	11.07	0	0	0	0	63.42	0	0
Limiting low moisture	SM0	0	0.1	0.2	2.23	2.11	0	11.09	0	2.9	0	0	0	0
Limiting low temperature	DV0	11	12	13	1.64	1.15	0	0	2.4	1.4	0	0	0	0
Degree-days per Generation	PDD	560	700	840	1.44	0.39	0	0	0	0	0	0	0	0
Dry Stress Rate	HDS	-0.042	-0.035	-0.028	1.19	1.82	0.12	0	0	0	0	8.47	0	0
Cold Stress Degree-day Rate	DHCS	-0.00012	- 0.000 1	-0.00008	0.79	0.79	0.04	0	0	0	11.47	0	0	0
Cold Stress Degree-day Threshold	DTCS	14	15	16	0.32	0.4	0.1	0	0	0	5.4	0	0	0
Lower optimal moisture	SM1	0.7	0.8	0.9	0.32	1.41	0	7	0	1.8	0	0	0	0
Lower optimal temperature	DV1	26	27	28	0.15	2.93	0	0	4.7	3.1	0	0	0	0
Upper optimal temperature	DV2	32	33	34	0.02	0.65	0	0	3.3	0.9	0	0	0	0
Heat Stress Temperature Threshold	TTHS	39	40	41	0.02	0.24	0	0	0	0	0	0	15.26	0
Limiting high temperature	DV3	39	40	41	0.01	0.13	0	0	2.5	0.2	0	0	0	0
Wet Stress Rate	HWS	0.008	0.01	0.012	0.01	0.15	0	0	0	0	0	0	0	0.6
Wet Stress Threshold	SMWS	2.4	2.5	2.6	0.01	0.25	0.03	0	0	0	0	0	0	0.8
Heat Stress	THHS	0.008	0.01	0.012	0	0.03	0	0	0	0	0	0	3	0
Upper optimal moisture	SM2	1.9	2	2.1	0	0.49	0	0.6	0	0.5	0	0	0	0
Limiting high moisture	SM3	2.4	2.5	2.6	0	0.3	0	0.37	0	0.3	0	0	0	0

Uncertainty analysis

Cautions with Sensitivity and Uncertainty Analyses

- Both analyses depend on the regions in which the analyses are conducted
- Neither addresses other forms of uncertainty
 - Is the model appropriate?
- A model with low sensitivity and low uncertainty could be highly erroneous!

Interannual variation in climate

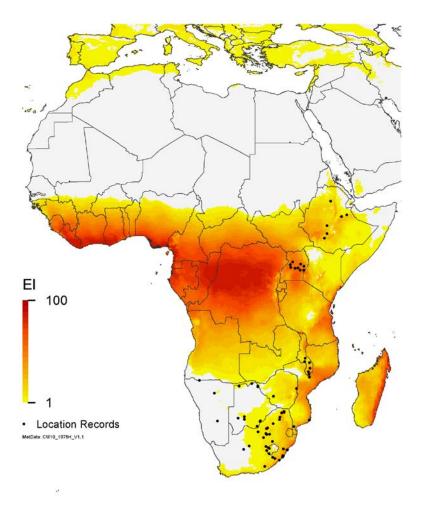
• PLAY Movie Here

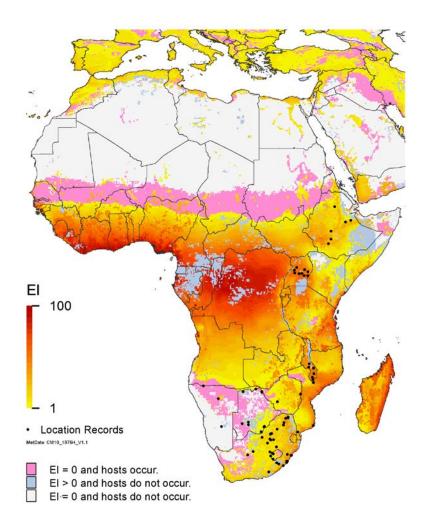
Conclusions

- All distribution points do not mean the same thing
 - Ephemeral
 - Reliant upon artificial conditions
- Considering irrigation explicitly has a substantial (positive) impact on the modelling process and the results
 - Better model "skill"
 - Parameters retain their meaning, increasing confidence in the model
- Sensitivity analyses direct attention to important considerations
- Uncertainty analyses of more use to decision-maker
 - Needs more research attention to better convey messages
- Static maps hide the degree of variability in species range boundaries

Grazie mille!

• CSIRO


Darren Kriticos Principal Research Scientist


- t +61 2 6246 4252
- e darren.kriticos@csiro.au
- **w** www.csiro.au/kriticos

• HEALTH & BIOSECURITY www.csiro.au

Chilo partellus potential persistence in Africa

