Predictive ecology: Modeling the risk of pest invasions

Brian Leung McGill University

Predictive ecology: Modeling the risk of pest invasions

Brian Leung McGill University

McGill

General challenges

Limited time

Limited information

Limited resources

Examples

The EPPO prioritization process for invasive alien plants

S. Brunel¹, E. Branquart², G. Fried³, J. van Valkenburg⁴, G. Brundu⁵, U. Starfinger⁶, S. Buholzer⁷

A. Uludag⁸, M. Joseffson⁹ and R. Baker¹⁰ 10EPP/EPPO, 21 Bld Richard Lenoir, 75011 Paris, France; e-ma ²Belgian Biodiversity Platform, Centre de recherche de la Nature, Belgium

³LNPV, Station de Montpellier, Campus International de Baillargu 4Plant Protection Service, Geertjesweg 15, P.O. Box 9102, 6700 H 5Regione Autonoma della Sardegna, Assessorato della Difesa dell' Generale, Via Biasi n. 7, 09131 Cagliari, Italy ⁶Julius Kühn Institut (JKI), Federal Research Centre for Cultivate 11/12, 38104 Braunschweig, Germany

7Agroscope Reckenholz- Tänikon Research Station ART, Reckenhol 8EEA, Kongens Nytory 6, 1050 Copenhagen, Denmark 9Swedish Environmental Protection Agency, S-106 48 Stockholm, S 10Food and Environment Research Agency, Sand Hutton, YO41 1L

Mary Bomford Bureau of Rural Sciences

Journal of Environmental Management (1999) 57, 239-251 Article No. jema. 1999.0297, available online at http://www.idealibrary.com on IDE L

A weed risk assessment model for use as a biosecurity tool evaluating plant introductions

P. C. Pheloung^{†‡}, P. A. Williams^{§*}, S. R. Halloy¹

Vol. 20(2011): 15-28.

A review of risk prioritisation schemes of pathogens, pests and weeds: principles and practices

Review of risk assessment systems of IAS in Europe and introducing the German-Austrian Black List Information System (GABLIS)

Franz Essla.*, Stefan Nehring^b, Frank Klingenstein^{b,c}, Norbert Milasowszky^d, Christelle Nowack^b, Wolfgang Rabitsch^a

^a Environment Agency Austria, Department of Biodiversity and Nature Conservation, Spittelauer Lände 5, A-1090 Vienna, Austria Erver omnen regency russing, began innes of bootervisity and rusar e conservation, spinnaute Lunae 7, n-1050 vientia, russina Pederal Ryony for Nature Conservation, Konstantinstraße 110, D-5317B Bonn, Germany * Federal Ministry for the Environment, Nature e Conservation and Nuclear Safety, Referat NIZ, Robert-Schuman-Platz 3, D-53048 Bonn, Germany 4 IFABU, Argentinierstraße 54/21, A-1040 Vienna. Austria

Journal of Applied Slowing down a pine invasion despite uncertainty in Ecology 2005 42, 1020-1030 demography and dispersal

YVONNE M. BUCKLEY,*† ECKEHARD BROCKERHOFF, ‡ LISA LANGER, TNICHOLAS LEDGARD, THEATHER NORTH and MARK REES *The Ecology Centre, University of Queensland, School of Integrative Biology, St Lucia, QLD 4072, Australia; [†]CSIRO Sustainable Ecosystems, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, QLD 4067, Australia: ±Ensis (a joint venture between CSIRO and New Zealand Forest Research, Institute Ltd), Forestry Road, University of Canterbury, PO Box 29237, Christchurch, New Zealand: &Landcare Research, PO Box 69, Lincoln 8152, New Zealand; and IDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, UK

OPEN CACCESS Freely available online

PLos one

Predicting Invasive Fungal Pathogens Using Invasive Pest Assemblages: Testing Model Predictions in a Virtual World

Dean R. Paini^{1,2}*, Felix J. J. A. Bianchi^{3va}, Tobin D. Northfield^{4vb}, Paul J. De Barro^{2,3}

1 Ecosystem Sciences. Commonwealth Scientific and Industrial Research Organisation. Canberra, Australian Capital Territory, Australia. 2 Cooperative Research Centre for National Plant Biosecurity, Canberra, Australian Capital Territory, Australia, 3 Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation, Brisbane,

Journal of Applied Ecology 2009, 46, 787-795 doi: 10.1111/j.1365-2664.2009.01674.x

A global risk assessment for the success of bird introductions

Miguel Vall-llosera^{1,*} and Daniel Sol^{1,2}

Biological Invasions (2006) 8: 241-254 DOI 10.1007/s10530-004-5573-8

© Springer 2006

Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models

Brian Leung^{1,2,*}, Jonathan M. Bossenbroek¹ & David M. Lodge¹

Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models

L.R. Carrasco^{a,b,*}, J.D. Mumford^a, A. MacLeod^b, T. Harwood^c, G. Grabenweger^d, A.W. Leach^a, J.D. Knight^a, R.H.A. Baker^b

^a Centre for Environmental Policy, Imperial College London, Exhibition Road, London SW7 2AZ, UK ^b The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK CSIRO Entomology, Clunies Ross St., Black Mountain, Canberra, ACT 2601, Australia ^d Institute for Plant Health, Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, A-1220, Vienna, Austria

RISK = Probability of event * Severity of event

Related topics Management

Lovett et al. 2016. Ecological Applications

Related topics Risk analysis: choice of tools

Invasion risk & management

Data Available

Probability models Likelihoods **Decision theory**

Optimality

(e.g., cost-benefit costeffectiveness)

Severe Uncertainty

(fewer assumptions, but many still exist!) Expert opinion Scenario analysis

Bounds/thresholds

(e.g., info-gap, minimax)

Polasky et al. 2011. TREE cf. Hayes et al. 2013. MEE.

Related topics Risk analysis: choice of tools

Invasion risk & management

Data Available Probability models Likelihoods **Decision theory**

Optimality

(e.g., cost-benefit costeffectiveness)

Severe Uncertainty

(fewer assumptions, but many still exist!) Expert opinion Scenario analysis **Bounds/thresholds**

(e.g., info-gap, minimax)

Polasky et al. 2011. TREE cf. Hayes et al. 2013. MEE.

Overview Options Semi-Qualitative Quantitative Examples

Scoring Risk Assessment > 70 RA tools developed

e.g., screening tool for Freshwater Invertebrates (FI-ISK)

Number	Question	Guidance
1	Is the species adapted for aquacultural or ornamental purposes?	The taxon must have been grown deliberately and subjected to substantial human selection for at least 20 generations, or is known to be easily reared in captivity (e.g. aquaculture or aquaria).
2	Has the species become naturalised where introduced?	The taxon must be known to have successfully established self-sustaining populations in at least one habitat other than its usual habitat (e.g. lotic vs. lentic) and persisted for at least 50 years (response modifies the effect of Q1).
3	Does the species have invasive races/varieties/sub-species?	This question emphasizes the invasiveness of domesticated, in particular ornamental, species (modifies the effect of Q1).
4	Is species reproductive tolerance suited to climates in the risk assessment area (0-low, 1-intermed, 2-high)?	Climate matching is based on an approved system such as Climex, GARP or Climatch. If not available, then assign the maximum score (2).
5	What is the quality of the climate match data (0-low; 1- intermediate; 2-high)?	The quality is an estimate of how complete the data used to generate the climate analysis is. If not available, then the minimum score (0) should be assigned.

Tricarico et al. 2010. Risk Analysis

Scoring Risk Assessment Uncertainty

- Often unmeasured
- Meaning questionable
 - (e.g., number unanswered questions)
- Linguistic uncertainty problematic

Quantitative Risk Assessments

Mapping risk literature onto 15 **TEASI** equations

Transport Establishment Abundance Spread Impact

$$N_{i,t} = \sum_{j=1}^{J} \sum_{k=1}^{V_{i,j,t}} O(E_{j,t'}, v_{i,j,k,t}, S, X_{j,t'}, \sigma_{o}) * f_{g}(t-t', D_{ij}, \vec{E}, v_{i,j,k,t}, S, \sigma_{g}) * pr(R | E_{i,t}, v_{i,j,k,t}, S)$$

Leung et al. 2012. Ecology Letters

Quantitative Risk Assessments

At each stage of the invasion process and impact, we differentiated four main aspects:

TRANSPORT

$$N_{i,t} = \sum_{j=1}^{J} \sum_{k=1}^{V_{i,j,t}} O(E_{j,t'}, v_{i,j,k,t}, S, X_{j,t'}, \sigma_{o}) * f_{g}(t - t', D_{ij}, \vec{E}, v_{i,j,k,t}, S, \sigma_{g}) * pr(R | E_{i,t}, v_{i,j,k,t}, S)$$

Leung et al. 2012. Ecology Letters

Quantitative Risk Assessments Uncertainty

Options

- Standard error, unexplained variation
- Misspecification rates (e.g., AUC)
- Bayesian
- Stochastic models
- Sensitivity analysis
- Ensemble models

Leung et al. 2012. Ecology Letters

Principles for balancing complexity

- Uncertainty exists, but decisions must be made
- The world is complex, but the endpoints of interest are few
- All models are wrong, but some are better than others

Principles for balancing complexity

- Uncertainty exists, but decisions must be made
- The world is complex, but the endpoints of interest are few
- All models are wrong, but some are better than others

Additional thoughts

- How can we estimate it?
- Is it useful and/or predictive?
- What factors are we missing (implicit assumptions)?

Illustrative example Gravity Models

$$N_{i,t} = \sum_{j=1}^{J} \sum_{k=1}^{V_{i,j,t}} O(E_{j,t'}, v_{i,j,k,t}, S, X_{j,t'}, \sigma_{o}) * f_{g}(t-t', D_{ij}, \vec{E}, v_{i,j,k,t}, S, \sigma_{g}) * pr(R \mid E_{i,t}, v_{i,j,k,t}, S)$$

Leung et al. 2004. Ecology

Illustrative example Gravity Models

$$=\sum_{j=1}^{J}\sum_{k=1}^{V_{i,j,t}} O(E_{j,t'}, v_{i,j,k,t}, S, X_{j,t'}, \sigma_{o}) * f_{g}(t-t', D_{ij}, \vec{E}, v_{i,j,k,t}, S, \sigma_{g}) * pr(R | E_{i,t}, v_{i,j,k,t}, S)$$

Illustrative example **Gravity Models**

Summary Comparisons

Semi-qualitative approaches

- Broader TEASI coverage
- Expert opinion
- Model structure unclear
- Uncertainty ad-hoc

Quantitative models

- Less TEASI coverage
- Even simple models are worthwhile
- Proxy variables & predictors are useful
- Uncertainty analyzed but heterogeneous

**Few explicit comparisons between methods

Principles for balancing complexity

- Uncertainty exists, but decisions must be made
- The world is complex, but the endpoints of interest are few
- All models are wrong, but some are better than others

Additional thoughts

- How can we estimate it?
- Is it useful and/or predictive?
- What factors are we missing (implicit assumptions)?

Transport Wood Borer Pest Interceptions

Brockerhoff et al. 2014. Ecology

Transport/Establishment Wood Borer Pest Interceptions

$$P_{i,j} = 1 - q^{N_{i,j}}$$

Brockerhoff et al. 2014. Ecology

Pathway Level Joint Models

Propagule pressure & Environment & Traits → Establishment

$$P_{i,j} = 1 - q (E_i, S_j)^{N_{i,j}}$$

log(Propagule pressure)

Bradie & Leung, 2015. J. Appl Ecol., Della Venezia & Leung. In prep.

Pathway Level Joint Models: Spread

Propagule pressure & Environment & Traits \rightarrow Spread

- 64 forest pest species
- Current distribution
- Date of first discovery

Hudgins, Liebhold & Leung. 2017. Ecology Letters

Pathway Level Joint Models

$$T_{ii} = e^{-\alpha(S,E,N)d_{ij}}$$

Dispersal Kernel Model

Ecosystem: Forests

- 64 forest pest species
- Current distribution
- Date of first discovery

Hudgins, Liebhold & Leung. 2017. Ecology Letters

8e+06

6e+06

4e+06

2e+06

0 + 00

4e+06

Hudgins, Liebhold & Leung. 2017. Ecology Letters

2e+06

 $R_{MSF}^2 = 0.76$

Observed Range Area (km²)

Pathway Level Joint Models

$$T_{ij} = e^{-\alpha(S,E,N)d_{i,j}}$$

Dispersal Kernel Model

Average Locational Accuracy = 74%

** forested area

** human population density

Pest Richness

Aukema et al. 2011. PLoS One.

Economic Impacts Species & Stakeholders Unequal

- Local Government/Residential pays most
- Poster pest account for 25-50%
- Wood borers worse (1.7 Billion)
- 32% chance of another borer poster pest in 10 yrs

Aukema et al. 2011. PLoS One.

Management & Policy (ISPM15)

Cost of ISPM15

- GTAP-M economic model
- Incorporates feedbacks in economic flows
- 437M initial cost of ISPM15

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)
- 11.8B expected net benefit

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)
 - 11.8B expected net benefit
- Avert more pests than currently established in USA

Leung et al. 2014. Frontiers in Ecology and the Environment

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)
 - 11.8B expected net benefit
- Avert more pests than currently established in USA
- Annual benefit by 2016, cumulative benefit by 2025

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)
 - 11.8B expected net benefit
- Avert more pests than currently established in USA
- Annual benefit by 2016, cumulative benefit by 2025
- Temporal aspect critical consideration

Leung et al. 2014. Frontiers in Ecology and the Environment

- 34 Million avg pest cost (most innocuous) (Aukema, Leung, et al. 2011)
- 437 Million treatment cost (Strutt et al. 2013)
- 52% efficacy of treatment (Haack et al. 2014)
 - 11.8B expected net benefit
- Avert more pests than currently established in USA
- Annual benefit by 2016, cumulative benefit by 2025
- Temporal aspect critical consideration
- Establishments projected to triple

Thanks!

National Center for Ecological Analysis and Synthesis $(\nabla^2 \phi) = \frac{\partial \psi}{\partial z} \frac{\partial}{\partial x} (\nabla^2 \psi) - \frac{\partial \psi}{\partial x} \frac{\partial}{\partial z} (\nabla^2 \psi) + v \nabla^2 (\nabla^2 \psi) + g \alpha \frac{dW}{dx}$

JROPEAN

ENCE

