

Inferential and geostatistical analysis to optimize sampling, monitoring, and decision making in the management of *Diaphorina citri* (Hemiptera: Liviidae) in Mexico.

Dr. Gabriel Díaz-Padilla * Rafael A. Guajardo-Panes J. Isabel López-Arroyo Ignacio Sánchez-Cohen

* Conference speaker Researcher – Modeling and Agrometeorology Program National Institute for Forestry, Agriculture and Livestock Research (INIFAP)

Ottawa, Canada

The National Institute for Forestry, Agriculture and Livestock Research (INIFAP) is part of the ministry of Agriculture (SAGARPA).

Institutional Objective

Develop and promote strategic research to contribute to the solution of major problems of the agricultural and forestry sector.

INIFAP has a presence in whole Mexico

Where are we?

-Cotaxtla Experimental Station in the State of Veracruz

Program of Modeling and Agrometeorology

The Asian Citrus Psyllid (ACP) and the Citrus Disease Huanglongbing (HLB)

The Situation: is one of the most destructive diseases of citrus worldwide.

The monitoring and control of the vector is a very expensive and important government action

Status of the HLB in Mexico

Firsts outbreaks reported in Mexico

the lemon plant has frequent shoots (bud break) due to frequent pruning, and most of them it is irrigates The insect vector (Diaphorina citri) is widely disseminated.

Dissemination of HLB in Mexico – July 2017

So far, 15% of the commercial area has been infected with HLB

Negative impact of HLB

The greatest damage is found in Colima state which is the main mexican lemon producer.

The production has decreased in nearly 50% of the annual harvest

The National Campaing for the managment, Monitoring and control against the HLB and its vector was established in 2010. (SENASICA, 2010)

Based on the oficial protocol of monitoring - 2015

The registration of capture in the network traps was performed weekly.

The sampling scheme is not based on statistical or GeoStatistical methods.

The number of traps and its location, depend mainly on the available money.

The distribution of the traps was every 200 meters

The distances among orchards with traps does not have a theorical base

Some questions about the protocol of monitoring - 2015

- Are there a lot of traps in the orchards?
- Are enough traps in monitoring?

- Are they correctly located, distanced and oriented?
- Should they be more grouped?

OLD SCHEME OF MONITORING 2015

Database integration

Exploratory analysis

3

- 2 Mapping the potential risk of *D. citri*
- $\overline{x} = \frac{\sum_{i=1}^{m} x_i}{n}$ Resample (Average and standard deviation)

- Spatial distribution of Psyllids 5 🍙 Negative binomial Number of traps
- 6 🧧 Geographical orientation

NEW IMPROVED SCHEME 2016 - 2017

1 Database integration

The Federal institution in charge to keep the national database of the whole monitoring in Mexico

A GREAT BUNCH OF DATA TO ANALIZE IN 6 MONTHS

2 Mapping the potential risk of *D. citri*

ASI: Area sown Index

i: climatic station

Spatial distribuition of potential risk of D. citri

Colima state

3 Exploratory analysis (2015)

PORCENTAGE OF TRAPS WITH

No. State		Number of traps		Total records	Average of capturing per		standar deviation		0	1			2	N nı captı	laximum umber of ured psyllids
				records	1	trap / year			CAPT	URED	PS	YLLI	LLIDS		ap in a week
1	COLIMA		2,845	106,085		1.211	4.46	8	0.7081	0.10	032		0.0638		216
2	VERACRUZ		8,873	450,382		0.283	1.85	51	0.8825	0.0	641		0.0265		326
3	MICHOACAN		9,044	216,546		1.08 <mark>0</mark>	2.90)5	0.5099	0.2	114		0.1784		426
4	NUEVO LEÓN		1,365	60,043		0.052	0.40)1	0.9683	0.0	216		0.0059		31
5	YUCATAN		5,364	149,693		0.026	0.68	9	0.9814	0.0	145		0.0031		254
6	BAJA CALIFORNIA		644	32,775		0.031	0.20)4	0.9739	0.0	212		0.0046		4
7	BAJA CALIFORNIA SUR		1,389	41,005		0.689	<mark>3.</mark> 88	80	0.7996	0.0	817		0.0490		415
8	CAMPECHE		4,542	180,274		0.015	0.20	6	0.9897	0.0	079		0.0017		26
9	CHIAPAS		3,993	194,974		0.098	0.52	9	0.9348	0.04	448		0.0134		120
10	GUERRERO		3,209	152,561		0.038	0.42	20	0.9707	0.0	270		0.0009		76
11	HIDALGO		1,597	81,212		0.010	0.12	20	0.9910	0.0	081		0.0007		8
12	JALISCO		5,071	204,574		0.243	2.18	6	0.8928	0.0	596		0.0248		700
13	MORELOS		466	22,436		0.188	0.72	25	0.8810	0.0	792		0.0279		24
14	NAYARIT		2,856	118,467		0.099	0.77	'9 <mark></mark>	0.9442	0.0	392		0.0097		83
15	OAXACA		2,328	90,101		1.060	5.30	0	0.77 <mark>92</mark>	0.0	741		0.0451		400
16	PUEBLA		3,869	85,432		0.276	1.02	27	0.8497	0.0	884		0.0368		69
17	QUINTANA ROO		3,230	162,406		0.009	0.28	32	0.9963	0.0	020		0.0008		60
18	QUERETARO		637	32,853		0.247	1.24	1	0.8740	0.0	848		0.0216		67
19	SONORA		3,578	24,814		0.406	2.95	51	0.8437	0.0	852		0.0344		260
20	TABASCO		6,300	269,904		0.121	0.82	25	0.9300	0.0	453		0.0188		105
21	TAMAULIPAS		10,560	421,360		0.088	0.69	94	0.9592	0.0	230		0.0091		57
22	SAN LUIS POTOSI		1,399	52,080		0.002	0.08	33	0.9986	0.0	012		0.0001		9
23	SINALOA		2,777	97,207		0.424	2.79)1	0.8346	0.0	705		0.0485		633
24	ZACATECAS		401	17,531		0.031	0.20	9	0.9750	0.0	197		0.0047		4
			86,337	3,264,715		0.280	1.44	9	89%		5%		3%		

4 Resample

10,000 resamples of size n

2015					Average								Standard Deviation			
State	Traps	Average of capturing	Standard Deviation	80 % of traps		<mark>60 %</mark>		40 %		20 %		80 %	60 %	40 %	20 %	
				n	AVG	n	AVG	n	AVG	n	AVG	SD	SD	SD	SD	
COLIMA	2845	1.2105	4.4685	2276	1.21	1707	1.21	1138	1.209	569	1.211	4.474	4.47	4.458	4.469	
VERACRUZ	8873	0.2827	1.8512	7098	0.2826	5324	0.2826	3549	0.2825	1775	0.2827	1.857	1.854	1.842	1.83	
MICHOACAN	9044	1.0799	2.9048	7235	1.08	5426	1.08	3618	1.08	1809	1.08	2.891	2.887	2.881	2.849	
NUEVO LEÓN	1365	0.0523	0.4011	1092	0.0524	819	0.0524	546	0.0524	273	0.0523	0.4001	0.3994	0.3974	0.3975	
YUCATAN	5364	0.0263	0.6894	4291	0.0264	3218	0.0264	2146	0.0264	1073	0.0263	0.5977	0.5676	0.5118	0.4645	
BAJA CALIFORNIA	644	0.0313	0.2042	515	0.0313	386	0.0314	258	0.0313	129	0.0314	0.204	0.2041	0.204	0.2037	

By reducing the number of traps, the average and the standard deviation of the data do not have very significant changes.

Colima state, Mexico

maximum likelihood method

Low dispersion

	NATIONAL CONCENTRATE						
n	Size (K)	AVG	SD	ΜΑΧ			
200	0.0575	0.5649	3.0455	30			
400	0.1200	0.2100	0.7739	10			
600	0.1878	0.2000	0.6169	5			
800	0.0699	0.2662	1.4884	26			
1000	0.0618	0.1849	0.8680	11			
1500	0.0794	0.2633	1.5644	45			
2000	0.0902	0.2650	1.5877	59			
10000	0.0728	0.2597	1.7703	90			
100000	0.0749	0.2651	1.5872	153			
1000000	0.0734	0.2668	1.9079	700			
2000000	.073023	0.2667	1.8821	700			
3264660	0.0731	0.2664	1.7868	700			

If the values of the parameter (K) are close to zero, it is likely that the incidence of psyllids in the orchard will be aggregated.

5 Negative binomial

(Number of traps)

Psìlidos Psìlidos 90% 95% 70% 80% (k) 11 15 21 1 28 22 27 36 44 2 3 33 39 49 58 Captured ÷ ÷ ÷ ÷ 8 psyllids 5 53 61 73 84 8 ÷ ÷ 8 8 10 103 114 130 144 ÷ 8 ÷ 8 ÷ 15 152 165 200 184 ÷ ÷ ÷ ε. ÷ 20 > 200 > 200 > 200 > 200

p = 0.10

Disaggregation of a sampling line

6 Geographical orientation to capture more psyllids

Using the **convex hull** algorithm in **R software**, it was possible to delimit the polygon formed by the traps located in a citrus orchard

Effect of trap's orientation on the number of captured psyllids

Average of psyllids captured according to the trap's orientation

State	East	Northeast	Northwest	North	West	South	Southeast	Southwest	
BAJA CALIFORNIA	0.0124176	0.0474360	0.0343244	0.0187548	0.0191374	0.0192444	0.0497519	0.0376530	
BAJA CALIFORNIA SUR	0.8056566	0.6898925	0.5447348	0.5592583	0.7434729	0.7033287	0.8233296	0.6315953	
CAMPECHE	0.0156049	0.0159901	0.0127139	0.0152466	0.0142817	0.0139931	0.0167737	0.0155432	
CHIAPAS	0.0926320	0.0968328	0.1051527	0.0955556	0.0981320	0.0893973	0.0969537	0.0949389	
COLIMA	1.3734095	1.0646024	1.2561511	1.0865371	1.3952885	1.1169554	0.9856775	1.1039072	
GUERRERO	0.0299281	0.0376741	0.0302681	0.0289829	0.0373858	0.0355713	0.0317820	0.0383401	
HIDALGO	0.0107563	0.0097479	0.0151334	0.0122208	0.0081364	0.0083068	0.0093058	0.0088555	
JALISCO	0.2447515	0.1604835	0.1860025	0.1723045	0.2099224	0.2088491	0.2902330	0.2036677	
MICHOACAN	1.0513640	1.0216550	1.0965794	1.0309337	1.0468566	0.9663459	1.0080107	0.9955646	

National concentrate for geographic orientation reference

Conclusions

- The Sampling lines must be integrated by 20 traps, one trap every second tree
- The traps should be located in areas with high risk presence for D.citri.
- the psyllids' spatial distribution is aggregated
- The traps' geographical orientation should be based on the national concentrate
- Reduction of traps up to 40%

Geostatistical analysis

The distance between trapping lines

5

It is convenient to place the traps near to rivers and roads

Analysis through variogram

TO KNOW THE DISTANCES OF SAMPLING LINES

By overlaying the traps on highways, roads and rivers.

ter A. Guagardo-Panes ', Gabriel Dao Patilia ', J. Itabel (Apaz-Arroyo' and Igracio Sancheo-Cr ' guajadourishalikinta godono στωτηλ. ' κισμη - (λικη ευτρεποιητώ, επιστώ του ' κισμη - (ευτο τωπο.

INTERCOUNTION in the state of Cosima, Neoka, 1996 of the ChrvLarea is established to Neokasi hime. The area collocated in 2014 was (5),55 ha, which metric a Neo low compared to the year 2000, representing a decrease of PAL which antiquies many in the persent of maniphighting products (NL). A decreas account by the salar count payfold, Dipherical International (sublish), antipare by the salar countary payfold. Dipherical International (sublish)

in 2015, 2,845 traps were installed in Colima, to monitor the presence and absence of the Ealas lector, an activity that is carried out every week throughout the year (Figure 1).

Due to the high cost of this task, new sampling othernes have been established in which the minimum distancing and wrientation of tap groups should be installed. The goal of the new sampling scheme is to reduce monitoring costs and increases their sources; and effectiveness to capture the invest.

Figure 1. Spatial states of close schemes and spatial schemes and

phone chi trapping sitas were mapped in citrus orchards, distance and emation were defined according to maps of potential risk areas (*igner 2) as et al. (2014). The information of wectors counciled by the traps recorded by Labica in 2015 integrated our database. (CESAVECD, 2016).

problem of problem of the problem of

m om opva kom of 1856 S). Agen 2. Spelar behefanlan af Hull fak som breite

icial thanks to CESANE-CHIAPHS for the economic sugport in the develop ERENCES

Constitution of the constitutiono

CONCLUSIONS

PRRG 2017 – International Pest Risk Research Group

RO 2017 - international Pest Disk Research Group

Impacts of using the new scheme of monitoring - 2017

- The results were presented in November 2016 to government authorities , they analized it and decided to implemented at the beginning of this year.
- The costs of monitoring have decreased by up to 30%.
- The increase in the capture of the psyllids is clearly reflected in graph.

WHY MEXICAN PEOPLE AND RESEARCHERS ARE WORRIED ABOUT THE PRESENCE OF HLB?

WORRYING SCALE

thanks

Gabriel Diaz Padilla

diaz.gabriel@inifap.gob.mx

www.inifap.gob.mx

Modeling and Agrometeorology Program

