

species including crop and wild plants)

Objective

To determine the effects of temperature on the biology and development of *B. dorsalis*, and construct temperature-dependent development models

Materials and methods

Temperature-dependent development experiments

The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae: Dacinae)

0.02 Temperature (°C)

0.04

Source and the second secon graphically the SS model at egg stage show an optimal temperature higher than the observed value. The highest development rate was at 31.8 °C for all stages, excluding pupa stage (34.8 °C)

Table 1 The lower developmental thresholds (LDT) and thermal constant

Stage	Regression			Lower threshold	Thermal
	Equation	df	r ²	temp. (°C)	constant (DD)
Egg	0.0374·X - 0.3854	4	0.990	10.3	26.8
Larva	0.0093·X - 0.1003	2	0.987	10.8	107.7
Pupa	0.0074·X - 0.0852	2	0.998	11.5	134.7
Preadult	0.0033·X - 0.0344	2	0.995	10.3	299.2

Preadult stage were 10.3°C and 299.2 degree-days (DD)

Table 2 Development time of Bactrocera dorsalis eggs at constant temperatures

Temperature	Development time (days)			
(°C)	Mean ± SE	Median		
13	_	_		

Eggs didn't survive at 13 °C, development period ranged from 7.6 days (14 °C) to 1.5 days (31.8 °C); from 23.8 to 34.8 °C, eggs eclosion was about two days

The development rate of eggs, larva, pupa, and preadult stage were fitted to two nonlinear development rate models, Lactin 2 and Sharpe-Schoolfield model (SS),

7.1 7.6 ± 0.00 f 14.4 4.9 16.2 5.2 ± 0.01 e 3.0 ± 0.01 d 2.7 19.5 23.8 2.2 ± 1.30 c 1.8 1.6 1.9 ± 0.06 b 27.7 1.5 ± 0.00 a 31.8 1.3 34.8 2.0 ± 0.01 b 1.8

Conclusions

-Our models, posses good realism and accuracy with our observations. However B. dorsalis development varies, within, hosts (Huang, Y-B., Chi, H., 2014.) and strains.

- Dipterans have a wide plasticity resulting in differences in their development time and temperatures thresholds References

Hendel, F. 1912 H. Sauter's Formosa-Ausbeute. Genus Dacus (Dipt.). Supplementa Entomologica. 1: 13-24. Huang, Y-B., Chi, H., 2014. Fitness of Bactrocear dorsalis (Hendel) on seven host plants and an artificial diet. Turk, entomol. Derg. 38, 401-414.

Acknowledgements

Development Administration, Republic of Korea for their support in the Project : "Development of population model of foreign

