

FINNISH FOOD AUTHORITY Ruokavirasto • Livsmedelsverket

Assessing the probability of freedom from pine wood nematode based on 19 years of surveys

Salla Hannunen & Juha Tuomola

International Pest Risk Research Group

3-6 September 2019

Poznan

Pest surveys & Confidence in pest freedom

- Several quarantine pests are surveyed annually in all EU countries
- However, the confidence in pest freedom achieved with the surveys is not commonly assessed
- EFSA has proposed that the methods employed in RiBESS+ could be used for this purpose
- We test run the methods by assessing the confidence in pest freedom achieved with 19 years of annual surveys of the pine wood nematode

RiBESS+ = Risk Based Estimate of System Sensitivity Update tool

Pine wood nematode (PWN)

- Serious pest of pine trees
- Spread
 - over long distances in wood and wood packaging material
 - from tree to tree by longhorn beetles of the genus *Monochamus*
- Native in North America, introduced in Asia and Europe (PT and ES)
- Quarantine pest in the EU & all EU countries must conduct annual surveys

PWN survey in Finland

- Annual surveys since 2000
 - Sampling of wood 2000–2018 (8097 samples)
 - Trapping of vector beetles 2012–2018 (47 samples)
- In the Finnish climate PWN is not expected to cause symptoms
- → The surveys must be based on laboratory analyses of samples
- PWN not found in any of the samples

PWN survey in Finland

- Each annual survey consists of a number of inspections
- Each **inspection** covers an area with a fixed size from which a **sample** of
 - wood or
 - Monochamus beetles
 - is collected

Aims of the survey & Design prevalence

- Design prevalence ≈ the minimum pest prevalence that the survey is expected to detect
- 1) We considered two alternative aims
 - a) Proving pest freedom to justify import requirements and to facilitate export = IMPORT-EXPORT SURVEY
 - b) Early detection of invasions to facilitate eradication
 - = EARLY DETECTION SURVEY
- 2) and defined design prevalences according to these aims

Inspection level design prevalence

- Defined as the proportion of infested wood objects & Monochamus adults
- Based on the prevalence of an ecologically similar species, *B. mucronatus*

a)Import-export survey

- = prevalence of *B. mucronatus* ~ population that has reached maximum density
- Wood: 0.12; *Monochamus*: 0.09

b)Early detection survey

- = 0.5 × prevalence of *B. mucronatus* ~ population that is established, but growing
- Wood: 0.06; *Monochamus:* 0.045

Region & country level design prevalence

 Defined as the proportion of infested area (where the inspection level prevalence ≥ inspection level design prevalence)

a)Import-export survey

= 0.01 (\approx 2250 km² with PWN host plants)

b)Early detection survey

- Based on the maximum area from which eradication could be attempted
 - based on the harvesting capacity that could be made available for eradication measures
- = 0.0027 (\approx 598 km² with PWN host plants)

The sensitivity of annual surveys

= The probability that the pest will be detected in the survey if it is present in the area at a prevalence ≥ the design prevalence

1)Sensitivity of inspections

- Finite population, hypergeometric distribution
- Separately for wood and beetle samples

2)Sensitivity of annual surveys

- Infinite population, binomial distribution
- First combined for each region, then the whole country

The probability of freedom based on multiannual surveys

= The probability that the prevalence of the pest is < the design prevalence if the pest is not detected in the surveys

SAMPLE

The sensitivity of annual surveys

The probability of freedom achieved by 2018

The initial prior probability of freedom => the probability of freedom in 2018

The mean time between invasions, years

Conclusion

- We can be rather sure that PWN is not (widely) present in Finland
- The surveys were unlikely to be extensive enough to ensure early enough detection to facilitate eradication of outbreaks

Conclusions

- The confidence in pest freedom may be overestimated because
 - 1) Hypergeometric and binomial distributions are used to assess sensitivity
 - Pest population is assumed to be not aggregated, although aggregated distribution is typical for invasive pests
 - 2) The probability of freedom is adjusted only with probability of invasion
 - Pest prevalence is assumed to increase between surveys only due to pest invasions, although it could increase also due to pest spread within the considered area

Conclusions

- The results of multiannual surveys should be interpreted with caution if the initial prior probability of freedom is not based on a proper assessment
- Quantitative estimates of the probability of invasion are needed to be able to accumulate confidence from multiannual surveys
 - But a rather rough estimate may be sufficient
- Ideas on how to determine meaningful design prevalence are needed to properly assess the risk management capacity of surveys
- Examples of the confidence that can be achieved with survey are needed to gain an understanding about the risk management capacity of surveys

Thank you!

For more information, please contact

salla.hannunen@foodauthority.fi