

<u>Sequential sampling plan for a regional management control of</u> <u>*Diaphorina citri* in <u>Persian lime</u>: *Citrus latifolia* Tan. in Mexico.</u>

Gabriel Diaz Padilla , Arroyo López , Isabel Jose Panes Guajardo , Alberto Rafael Ignacio Sánchez Cohen

3-6 September Poznan Poland

My first experience in Pest Risk Analysis was the development of this map, where the risk of the potential distribution of Diaphorina citri was evaluated.

I presented this map to citrus producers of Veracruz and one of them took the microphone and said:

.... It is a very nice map but what is it for? , what we really need is **to know when and what we should apply** to control the vector populations

Spatial distribuition of potential risk of D. citri

Some classical paper review

Wald, A. 1947. Sequential Analysis. Wiley. New York.

Oakland, G. B. (1950) 'An Application of Sequential Analysis to Whitefish Sampling', *Society International Biometric*, 6(1), pp. 59–67. doi: 10.2307/3001424.

Taylor, L.R. 1961. Aggregation, Variance and the Mean. *Nature* 189: 732-735.

BLISS, C. I., & OWEN, A. R. G. (1958). NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K. *Biometrika*, 45(1–2), 37–58. Retrieved from http://dx.doi.org/10.1093/biomet/45.1-2.37

Tsai, J. H., J. J. Wang, and Y.H. Liu. 2000. Sampling of *Diaphorina citri* (Homoptera: Psyllidae) on orange Jessamine in southern Florida. Florida Entomologist. 83: 446-459. Besides that I have the complete database of the national monitoring campaign 2016 with more or less 7 million of records used in risk map)

Why no study this and implement an strategy of Sequential Sampling in citrus and talk later with that farmer ?

Why sequential sampling and non-traditional sampling

- The sample size is minimized
- Save time and money
- Computers are often required
- Three possibilities are tested:
- 1. The null hypothesis is not rejected;
- 2. Rejection of the null hypothesis; and
- 3. Uncertainty (the decision is to take another sample)

- The sample size is set in advance
- Depends on the money available
- Maybe more expensive
- The decision is made at the end of the sampling
- Two possibilities are tested:
- 1. The null hypothesis is not rejected;
- 2. Rejection of the null hypothesis

Why Persian Lime?

(Citrus latifolia Tanaka)

In the world context, Mexico is the leading producer

95,609 hectares planted3,131,000 millions of dollars(Value of Production)

The annual income of a large number of families depends on the money they receive for harvesting this crop.

Why *Diaphorina citri* ?

- It is an important pest of citrus in several countries as it is a vector of a serious citrus disease called greening disease or Huanglongbing
- In Mexico, Persian Lime production has decreased by 30%
- Vector control is essential to prevent this disease

Why Area Wide Control (AWC)?

- It is a strategic component of the Integrated Pest Management.
- It has been shown to be:
- an important,
- necessary and
- effective strategy
- for controlling pests and diseases

Database:

Are records of the number of *Psyllids capture per Trap per Tree per Week (PCTTW),* at each of the 1150 sticky yellow traps, strategically located in persian lime plantations in Veracruz, State, Mexico.

Y_i=PCTTW

Visual representation of how does de records was obtained

One trap – one tree -one week

Counting the psyllids captured weekly

2019 Annual Meeting of the International Pest Risk Research Group

To implement a SS, it is necessary to define:

- the statistical distribution that fits data,
- the type of spatial distribution,
- the possibility of using a common k (kc)
- and setting values decision thresholds.

The statistical distribution that fits data

	Poisson	Binomial	Geometric	Negative Binomial(mme) Nega	ative Binomial(mle)
: sum of residuals	0.1243	: - 0.0350	: · 3.2634	9.2275	9.3172
Chi-square Statistic	112.5171	123.0327	44.1295	14.3522	3.2322
p-value	0.0000	0.0000	0.0000	0.2788	0.9937
MSE	939.0411	1032.6554	335.5326	57.5986	1.8276

Resampling 1000 times for differents samples sizes (10,20,200,500,1000) and the results were identical, so we concluded that the psyllids population follows a negative binomial distribution with an error of 1 %

The maximun likelihood method present a better fit than the moment method.

Spatial distribution

Resampled= 1,000 times

According to Taylor Power Law: If slope $\beta > 1$ the dispersion pattern is aggregated

According to Bliss y Owen (1950)

Parameter	Week 5-14	week 25-49
kc	0.07676573	0.05226572
kc inf	0.06699	0.04947
kc_sup	0.0849	0.05539
F_Slope (1/k)	5.209 **	18.43**
F_Intercept	0.00085 NS	2.5382 NS

Evaluating the possibility of using a common k (kc)

SADFR

F_cal= To justify the use of a common k the value of F of slope 1/k must be significant and that the intercept should be no significative)

	Copia de NBD Model Sequential Sampling-USDA-Krebs-Badii_VU_GDP2 (Autoguardado) - Exc												ado) - Excel				
	Archivo Ir	nicio Inse	ertar Di	seño de página	Fórmulas	Datos	Revisar	Vista	Desarrollado	r LASERFIC	HE Pov	ver Pivot	♀ ¿Qué desea	hacer?			
	* * •	ortar	Times N	ew Roma 👻 10	- A A =	= = =	≫·- ≣	e Ajustar te	exto	General				Normal	Bu	eno	Incorrect
	Pegar Co	piar 👻	N K	s . III . .	Δ.Δ.=	= = =	, = =	Combine	arv centrar -	\$ - 96 000	00, 0 ,	Formato	Dar formato	Celda de c	o Ce	lda vincul	Entrada
	🗸 , 🎸 Co	piar formato	IN A		······································			- combina	ir y centrar 🔹	φ 70 000	,00 → ,0	condicional	∗ como tabla ∗				
	Portapap	oeles n	ā l	Fuente	Es.		Alineaci	ón	Fai	Número	0 5					Estil	22
	H21		X V	Ĵx													
	A	В	с	D	E F	G		н	1	J	К	L M	N	0	Р	Q	R
	1	Dat	os	\leftarrow													
	2	kp o	0.0170			Calcul	lo de Paramet	ros		7-1						L	
	3	kp1 k común	0.2000	Econ	omic thresh	old	Va.	lores	HI V	alores			Calculo de	2 SILL	2 5111	hazo	
FIL LIE ETTOP	5	k comun	0.0525	Common K		кро Кроя	o 0.0	0225	Kp1a1	0.9653			10	3.0872	-1.9350	2.1235723	
probability	6	$\rightarrow \frac{uyu}{beta}$	0.0500			a0	- 0.1	3253	a1	4.8266			20	3.6634	-1.3588	2.1235723	
Type (I,II)	7	A	19.0000			po	0.3	3253	p1	3.8266			30	4.2395	-0.7827	4.6456938	
	8	В	0.0526				(p1*q0)/(p	0*q1)	3.2303				40	4.8156	-0.2066	4.6456938	
	9						q	l/q0	3.6420				50	5.3917	0.3695	6.8087764	
	10						9	J/ql	0.2746				60	5.9679	0.9457	10.590295	
	11						SL	ope	0.0576				70	6.5440	1.5218	12.913501	
	12						k	0=	-2.5111				80	7.1201	2.0979	15.265485	
	13							1=	2.5111				90	7.6963	2.6741	19.237966	
	14							(D T					100	8.2724	3.2502	21.121877	
	15	h	р	L(p) 1	E(n)		d1=(.057	′6*n)-2	.5111			110	8.8485	3.8263	24.191559	
	16	infin	0	1.00 4	3.59			(, -				120	9.4246	4.4024	28.102637	
	17	1	0.33	0.95 5	5.65		27-	_(_05	(76*2)	25111			130	10.0008	4.9786	30.879142	
	18	0.5	0.60	0.81 5	9.60		u2=	-(.03	/0*n)+	-2.3111			140	10.5769	5.5547	33.424127	
	19	0.0001	1.10	0.50 5	2.06								150	11.1530	6.1308	36.583647	
	20	-0.5	2.00	0.19 3	5.07		D -	-Tran	d numb	or			160	11.7292	5./0/0	30.38364/	
	21	-1	5.85 7.10	0.05 1			<u> </u>	-пар	a numb				170	12.5055	7.8502	A1 A76876	
	23	-1.5	13.56	0.00	3.83								190	13 4575	8 4353	44 026815	
	24	-3	48.75	0.00	1.01								200	14.0337	9.0115	44.026815	
	25															-	

13.56

7.19

3.83

0

0.33

0.60

1.10

Mean number psyllid captured per trap

2.05

A critical threshold corresponds to find 3 Psyllids in 10 traps

р

Some advances in results in the Regional Control Areas (ARCO)

- It has a great effect in reducing the incidence (90%) and rate of progress (75%) of the HLB;
- The incidence starts later and is slower,
- Reduces the population of local psyllids (from 76 to 97%), even in abandoned orchards
- It allows the use of a less intensive program of local vector control.

Mora (2018), Robles (2016), López (2018)

Thank you Engineer, I am convinced about Sequential Sampling, but I have two question for you :

how are we going to get organized for regional control because we are too many?

1) How you're going to convince SENASICA to include their model in the official protocol ?

The big challenge:

How to implement the strategy with small citrus producers (60%)

ARCOS= 500 -1000 ha

The average size of a citrus orchard is 1.5-2 ha

(SENASICA)The National Service for Agri-Food Health, Safety and Quality

Thank you for your attention !!!!!

Dr Gabriel Díaz Padilla INIFAP Agrometeorology and Modeling diaz.gabriel@inifap.gob.mx Thank you everbody for your attention !!!!!

Dr Gabriel Díaz Padilla INIFAP Agrometeorology and Modeling

diaz.gabriel@inifap.gob.mx

I hope you see you at the group dinner !!!