A quantitative assessment of the likelihood of entry of the Lewis mite, *Eotetranychus lewisi*, into the continental EU

> 11th meeting of IPRRG, 29th August – 1st September 2017 Ottawa, Canada

WORKING GROUP MEMBERS

 Maria Navajas¹, Filippo Bergeretti², Niklas Bjorklund³, Gianni Gilioli¹, Josep Jaques¹, <u>Alan MacLeod¹</u>, Gritta Schrader⁴, Wopke van der Werf¹ & Sybren Vos²

¹ EFSA Plant Health Panel
 ² EFSA ALPHA Unit
 ³ Visiting scientist EFSA – SLU
 ⁴ previous EFSA Plant Health Panel

- 1. Quantitative plant pest risk assessment method being developed by the EFSA Plant Health Panel
- Eotranychus lewisi (McGregor), Lewis mite, case study pest - biology & ecology
- 3. Entry pathways into EU
- 4. Results (comparison of scenarios)
- 5. The benefits of the new approach
- 6. Challenges

1. QUANTITATIVE METHOD

- EFSA Panel guidance from 2010* had to be reviewed
- Mechanism to link risk elements within each major
 step
 See also
- EFSA principles: transparency, uncertainty
- Quantitative system
 - Each risk element described in terms of a distribution
 - Monte Carlo simulation to combine distributions
- Outputs are distributions

Giuseppe Stancanelli

(Tuesday 10:55) (4)

2. PEST BIOLOGY & ECOLOGY

- Eotetranychus lewisi Lewis spider mite
- Many hosts (69 spp)
 - Outdoors e.g. Citrus, Prunus, Vitis
 - Glasshouses e.g. poinsettia
- Mostly on leaves, stems, flowers

http://www.epicgardening.com/spider-mites/

- Difficult to detect until high numbers (webbing & damage symptoms)
- Increasing concern in:
 - California strawberry & raspberry
 - Mexico peaches
 - Chile grapes
- Already quarantine pest in EU
 - Revision of EU legislation Commission need to check whether should remain listed: requested pest risk assessment

2. PEST ECOLOGY: PLANT DAMAGE

- Feed on the underside of leaves
- Yellow/dark spots on topside
- Necrosis on underside

Illustrations Anna Howell, UC Davis

https://onfloriculture.files.wordpress.com/2015/08/lewismite-ohiosu.jpg?w=413&h=279

2. LEWIS MITE DISTRIBUTION

- UK = outbreak, now eradicated
- Portugal = only Madeira

3. ENTRY - PATHWAYS

- *E. lewisi* reported from 69 herbaceous and woody plant species belonging to 26 different families
- Focus on four pathways:
 - 1. poinsettia (*Euphorbia pulcherrima*) potted plants and cuttings
 - 2. strawberry (*Fragaria* spp.) plants for planting from US and Canada
 - 3. raspberry (Rubus sp.) plants for planting
 - 4. fruits of Citrus (C. limon and C. sinensis)

3. ENTRY – POINSETTIA PATHWAY

Evidence as a real pathway

- Interception of *E. lewisi* in Poland in poinsettia glasshouse
- One outbreak of *E. lewisi* in UK glasshouse growing poinsettia (2014, arrived from Guatemala, was eradicated from UK)

Aim

- to estimate the average (median) number of packs of poinsettia plants* arriving in the EU each year, infested with *E. lewisi*, over the next ten years
- * un-rooted cuttings, rooted cuttings and young plants

3. ENTRY: CONCEPTUAL MODEL - POINSETTIA

1.Poinsettia demand - Average number of poinsettia plants marketed / consumed per year in the EU 2.Percentage of poinsettias imported from third countries into the EU 3. Percentage of poinsettia from third countries where *E lewisi* occurs 4. Conversion of pieces of poinsettia into packs as a pathway unit (4a. rooted packs; 4b unrooted packs) 5.Percentage of packs that are infested prior to export 6.Percentage of infested packs surviving (remaining infested) following export checks 7.Percentage of infested packs surviving (remaining infested) following transport, shipping & storage (Assume transport and storage conditions are not affecting the number of packs infested by mites but could increase the density of mites within the packs) - fixed at 100% 8. Percentage of infested packs that remain infested after EU Import checks - i.e. percentage of infested packs passing border inspection into the EU

9.Entry result: Average number of infested packs of poinsettia entering EU (per year)

3. ENTRY: EXPERT KNOWLEDGE ELICITATION

Followed EFSA guidance for knowledge elicitation* For each model parameter:

- Agree specific question
- Collect information / data
- Conduct analysis (convert data to address question)
- Note uncertainties
- Collectively review information (& analysis) & uncertainties
- Individually estimate five quantiles (1st 25th 50th 75th 99th)
- Reveal individual values
- Discuss
- Agree five quantiles as a group

3. ENTRY: EXAMPLE SUB STEP

 E_3 Question: What is the average annual percentage of poinsettia plants arriving in the EU over the next ten years, from countries where *E. lewisi* occurs?

Evidence, e.g.

- Countries where *E. lewisi* occurs
- Sources of all poinsettia
- Volumes from each country
- Trends (decline in imports from countries where *E. lewisi* occurs)

Uncertainties, e.g.

- Occurrence of *E. lewisi* (undetected spread)
- Data coverage (NL vs entire EU)
- Changes in sources & import volumes

3. ENTRY: IMPORT DATA FOR EU

AIPH: EU imports of cuttings & young plants (2015 data)

	Table 6.2.1 Cuttings & Young plants							00 kg ir	nporte	d								
				EU Importing country														
	from	NL	BE-LU	IT	ES	DE	DK	GB	FR	CZ	PL	AT	FI	SE	HU	EU other	EU Total	
	Netherlands	-	2,049	4,799	829	10,825	2,264	4,040	2,347	222	2,073	827	827	728	445	2,673	34,948	
	Germany	2,382	137	455	55	-	332	786	712	181	3,057	2,057	262	163	261	563	11 100	
	Bel / Lux	85	115	129	554	192	83	243	766	3	2	96	33	47	2	309		• • • •
	Italy	38	3	-	31	435	32	162	153	1	29	263	32	28	324	521	IVIä	ajority of
	Denmark	34	38	22	14	214	-	374	9	2	48	84	194	472	1	330	CI	I trada ic
	Poland	4	-	-	-	367	402	84	323	2	-	9	168	4	1	199	EU	i ti aue is
	Spain	157	3	295	-	378	8	-	253	-	141	5	-	-	-	204	i	nternal
	EU others	21	182	127	2	48	14	304	13	110	-	49	5	-	14	405	(''	
	France	15	17	43	53	74	657	158	-	1	-	20	-	6	1	56	1,1	
	Czech republic	-	-	-	-	23	1	-	-	-	679	25	-	-	-	135	8	
	Hungary	1	-	312	-	29	12	-	-	-	-	11	-	-	-	439	8	
	GB	3	1	-	1	6	25	-	19	-	-	-	3	1	-	343	40	
	Austria	-	-	1	-	41	4	-	-	23	-	-	-	-	2	52	12	
	Sweden	-	-	-	-	-	42	-	-	-	-	-	28	-	-	16	86	
	Finland	-	-	-	-	-	1	-	-	-	-	-	-	3	-	79	83	
	EU Total	2,740	2,545	6,183	1,539	12,632	3,877	6,151	4,595	545	6,029	3,446	1,552	1,452	1,051	6,324	60,661	6.1 million t
Countr	ies where E. lewisi occurs																	
	Costa Rica	12,158	1,325	102	86	41	11	2	2	-	-	-	-	-	-	-	13,727	
	El Salvador	784	5	4	3	3	-	1	1	-	-	-	-	-	-	-	801	
	Guatemala	3,461	1	152	2	5	-	-	-	1	-	-	-	-	-	-	3,622	
	Honduras	1,242	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,242	
	all E. lewisi sources	17 645	1,331	258	91	49	11	3	3	1	0	0	0	0	0	0	19,392	1.9 million t
	as % of EU	91.0	6.9	1.3	0.5	0.3	0.1	0.0	0.0	0.0	-	-	-	-	-	-	100	
		\smile																
	Rest of world	9,557	608	426	85	995	489	306	388	16	144	25	3	0	14	317	13,373	1.3 million t
	World	29,942	4,484	6,867	1,715	13,676	4,377	6,460	4,986	562	6,173	3,471	1,555	1,452	1,065	6,641	93,426	9.3 million t
					4		1	-,	/							-,		

3. ENTRY: POINSETTIA DATA FROM NL

• NL data: Sources of NL poinsettia cuttings (2010)

Country	No. Poinsettia cuttings		%	%
Uganda	15,695,883		47.88	
Kenya	7,093,864		21.64	
Ethiopia	6,646,691		20.27	
Sri Lanka	1,874,290		5.72	
Indonesia	615,735		1.88	
Brazil	254,381		0.78	
Israel	73,322		0.22	
Ecuador	31,010		0.09	
Thailand	14		0.00	
Vietnam	2		<u>0.00</u>	
Countries where <i>E. lewisi</i> occurs		32,285,192		98.48
Costa Rica	328,538		1.00	
Guatemala	147,389		0.45	
Mexico	15,100		0.05	
Colombia	7,700		0.02	
USA	<u>366</u>		<u>0.00</u>	
		<u> </u>		<u> </u>
		<u>32,784,285</u>		<u>100.00</u>

14

3. ENTRY: EXAMPLE SUB STEP

 E_3 Question: What is the average annual percentage of poinsettia plants arriving in the EU over the next ten years, from countries where *E. lewisi* occurs

Percentile	1 st	25 th	50 th	75 th	99 th
Estimate (%)	0.0	0.8	1.5	3.0	6.0

3. ENTRY: EXAMPLE SUB STEP

 E_4 Question: What is the average number of *pieces* of poinsettia in a *pack*^{*} imported into the EU.

* A pack is a sealed unit within which a mite could spread to other individual pieces of poinsettia in the same pack.

3. ENTRY: POINSETTIA DATA FROM NL (PACK SIZE, E₄)

3. ENTRY: POINSETTIA DATA FROM NL (PACK SIZE, E₄)

3. ENTRY: SPREADSHEET MODEL

4. RESULTS – POINSETTIA PATHWAY (@RISK OUTPUT)

Sub-steps multiply together

A0_P_N1_Entry_Poins

4. RESULTS - POINSETTIA PATHWAY SCENARIO

• Expressed as cumulative descending probability

4. RESULTS - POINSETTIA PATHWAY SCENARIO

• Expressed as cumulative descending probability

5. BENEFITS OF NEW APPROACH

- Provides mechanism to combine risk elements in logical manner
 - Increased transparency
- Automatically updates with revised inputs
 - Mechanistic
 - Promulgates uncertainties
- Can compare distributions (between pathways, between scenarios)
 - Evaluate risk reduction options
- (Reveals steps which contribute greatest lack of knowledge)

6.

THE CHALLENGES?

• Resource intense

Lack of data

• Communicating results

6. THE ANSWERS TO THE CHALLENGES?

- Resource intense
 - EFSA panel members learning
 - will become more efficient
 - Worth the added transparency (awaiting feedback)
- Lack of data
 - Always lack of data
 - Now transparent how lack of data addressed
- Communicating results
 - First few times will require a degree of "educating" Commission until they get used to new approach
 - Focus for risk communication should be on distributions, more helpful than specific numbers
 - Provides an impression of risk
 - Guidance for panel being developed

ACKNOWLEDGEMENTS

- Olaf Mosbach-Schulz¹
- Anna D Howell²

¹ EFSA AMU Support ² University of California, Davis

THANK YOU

• Questions?