Effects of temperature transfers on development, survival and reproduction of *Hermetia illucens* (Linnaeus) (Diptera: Stratiomyidae)

Ana Clariza Samayoa, Darren Kriticos and Shaw-Yhi Hwang

Organic waste is a huge problem in many countries

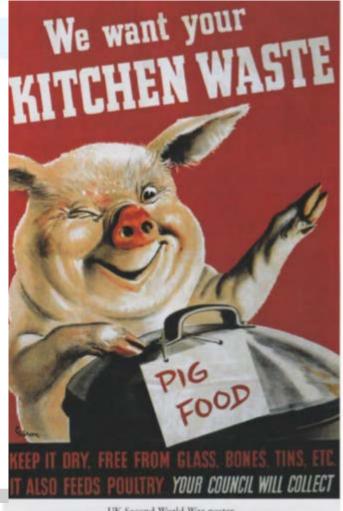
3,262

1.3 billion Tonnes of food are wasted per year (FAO 2011).

34 million Tonnes of municipal solid waste per year was produced in Canada (2008) (Statistics Canada, 2012)

Food Waste

http://www.ricesolutionslimited.com/food-waste.html


Gas emissions, and pollution like Methane

Food Waste Treatment

High temperature steaming of food waste for pig feed

Dr. Harvey Houng Department of Waste Management, Taiwan EPA

T Stuart, 2009

Composting sites located around Taiwan

Dr. Harvey Houng Department of Waste Management, Taiwan EPA

Conversion of organic material by insects

Ornidia obesa

Hermetia illucens

Musca domestica

Why Hermetia illucens

- Is capable of degrading large amounts of organic matter
- Has been used in the reduction of considerable quantities of solid waste
- Because its utilization in the production of biodiesel, animal feed, and fertilizer

Prepupa

Pupa

Larva

Adult

Hermetia illucens biology

- It was believed *H. illucens* will lay only one eggs mass
- Diapause haven't been properly addressed and was unknown till 2016.

Our purpose

- Demonstrate the use of a novel technique for estimating population temperature response parameters that can be use to model the growth potential of poikilotherms
- We use *Hermetia illucens* as a case study to estimate its potential as an organic waste treatment

Why use *Hermetia illucens* and temperature transfers

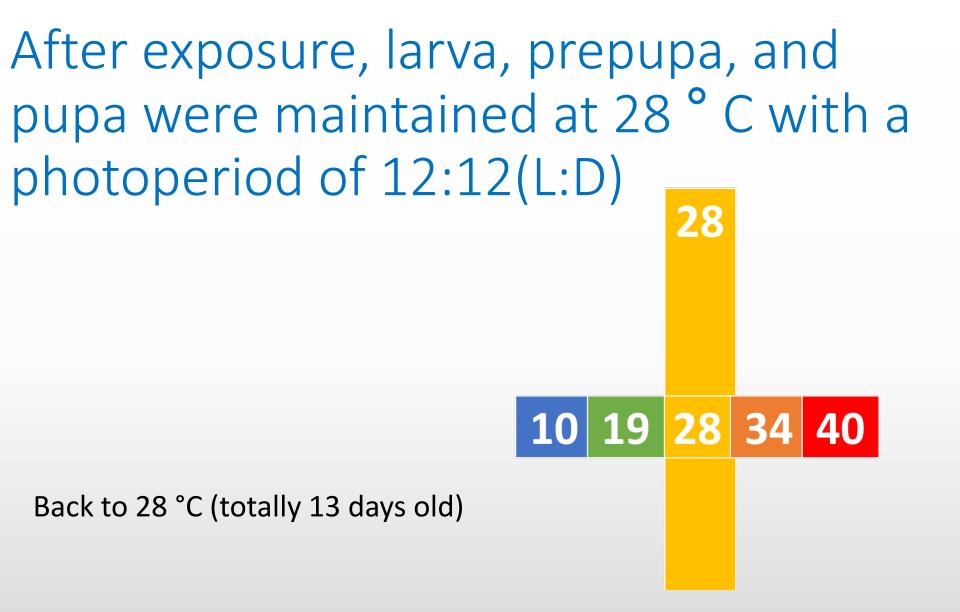
- *H. illucens* requires specific light intensity and adequate space for mating and oviposition
- Using constants temperatures is not an appropriate method to study *H. illucens*

Materials and methods

- 3:1 combination of wheat bran, chicken feed and water
- 1.5 g of Sobic Acid
- 1.75 of Methyl-p-hydroxbenzoate Diluted in 40 ml of 70% of alcohol 5ml of the solution was added to 100g of artificial diet + 250 ml of water

Newly-laid egg masses of *H. illucens* was exposed at 28 ° C

28

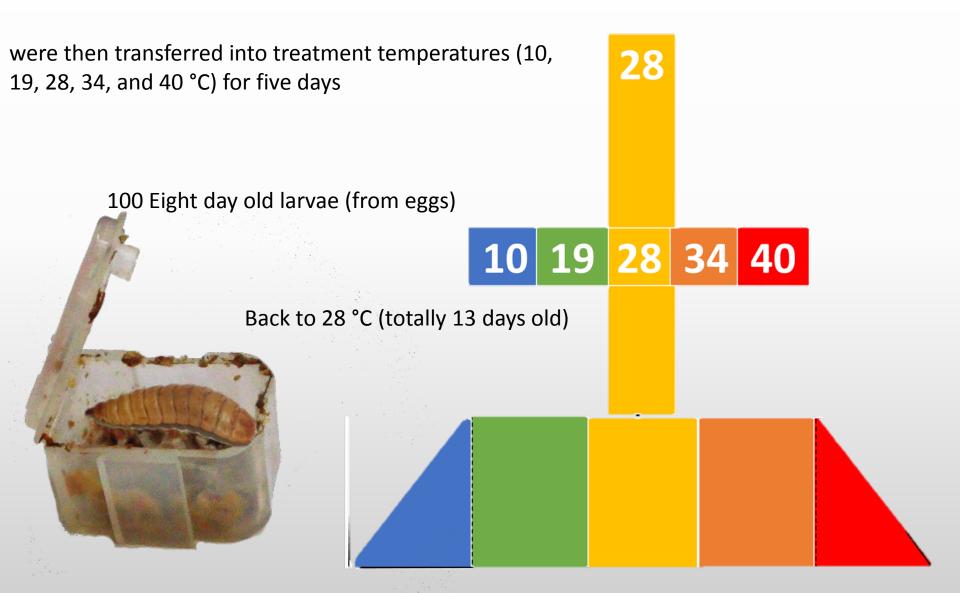

were then transferred into treatment temperatures (10, 19, 28, 34, and 40 °C) for five days

100 Eight day old larvae (from eggs)

10 19 28 34 40

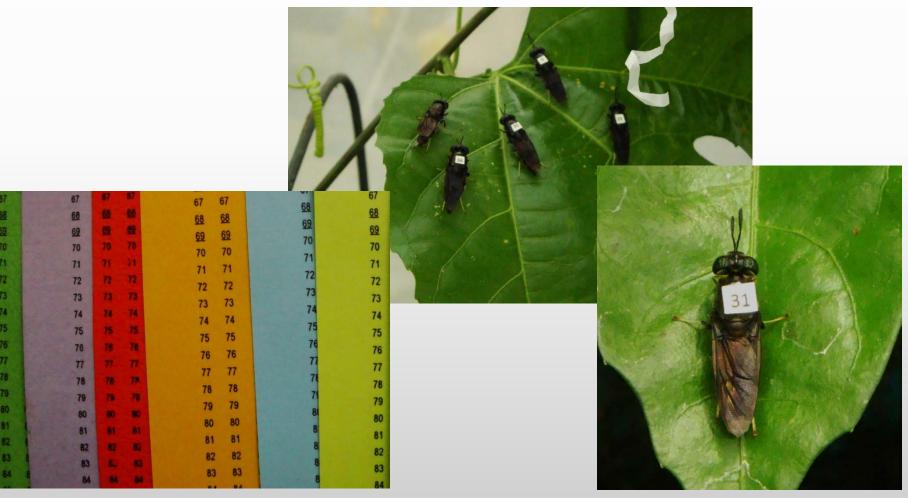
28

Survival and fecundity were recorded daily for each individual until the death of the entire cohort (at 28 ° C)


Pupa

Adult

Prepupa


Larva

Newly-laid egg masses of *H. illucens* was exposed at 28 ° C

H. illucens fecundity

Each surviving adult was marked with its respective number, glued to the thorax with nail polish, and then released into a 1- by 1- by 1-m cage in a 28 °C greenhouse.

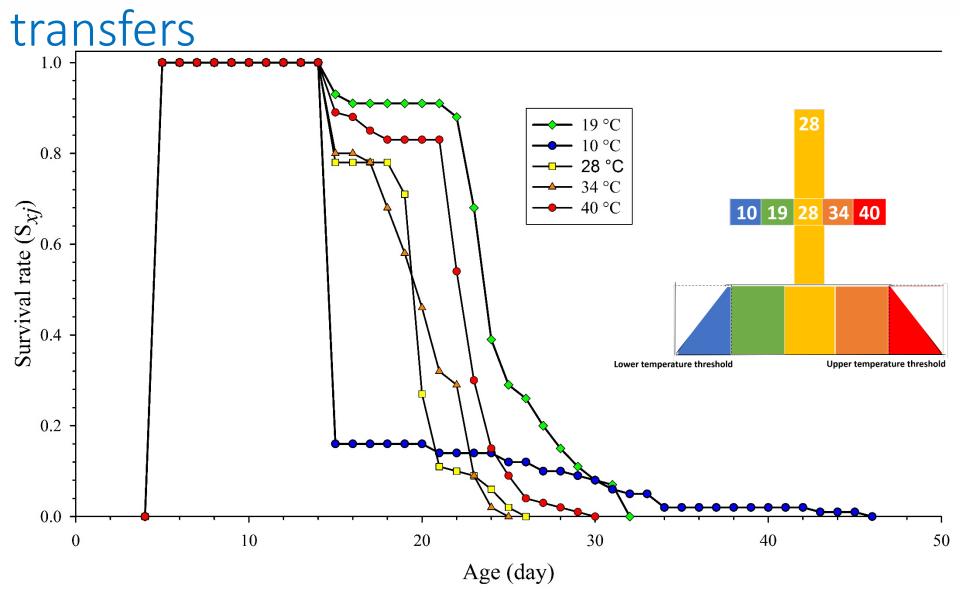
H. illucens fecundity

Cups filled with decomposing kitchen scraps were used as an attractant for oviposition

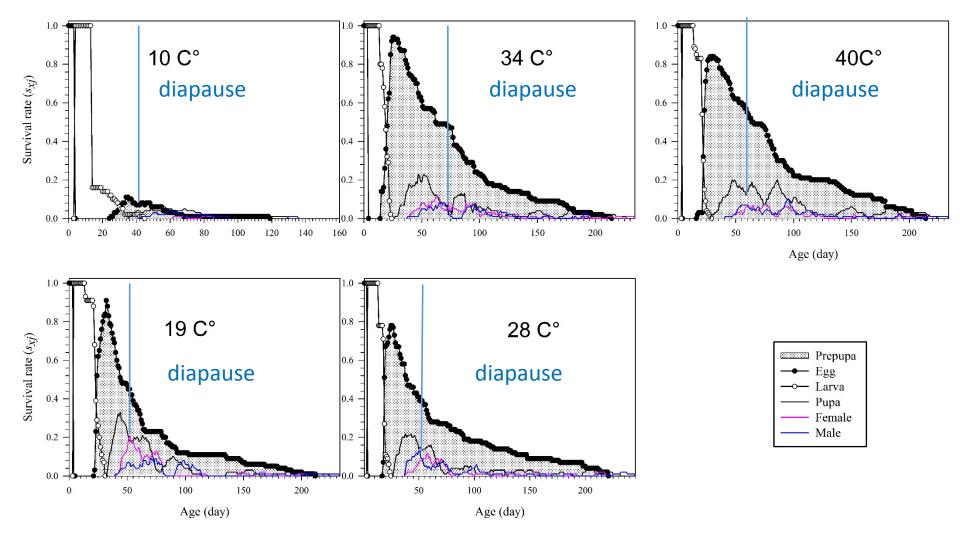
Data were collected and analyzed based on an age-stage, two-sex life table

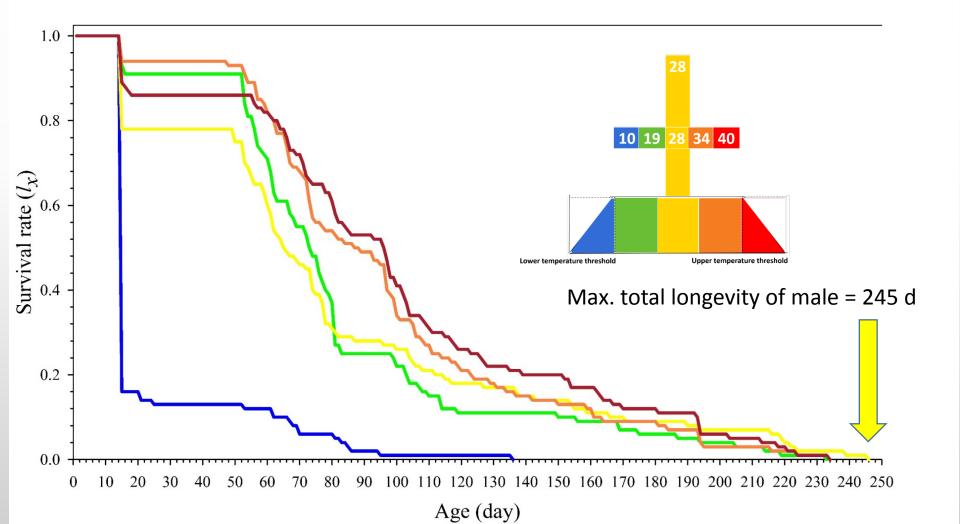
♥ Life table is the key to pop	pulation ecology, pest management, and biological control	×			
Age-Stage, Two-Sex Life Table Analysis F M Copyright 1997-2017 Hsin Chi Version: 2017.08.09 P C Main procedures A1. Read data C. Paired test General boot A2. Basic Run D. Pick 1 by 1 Harvest A3. Bootstrap E. Match tables Boot m(x) B. Read N, F F. 3D life table Boot I(x) Select a figure to display s(x,j) g(x,j) d(x,j) I(x) m(x) I(x)m(x) e(x) CumuRx v(x,j)	Graph You have following options to run TWOSEX. Option A. Life table analysis (individual-reared data): 1. Prepare your data (pure text file) and save it to a SPECIFIC folder. 2. Click button "A1. Read data" to select your life table data file. 3. Click button "A2. Basic Run" to analyze your life table raw data. 4. Click button "A3. Bootstrap" to calculate SEs of all estimates. Option B: Group-reared life table. Click "B. Read N, F." Option C: Paired bootstrap test (If the combined data file is ready.). Option D: Paired bootstrap test (You can select data file 1 by 1). Option F: Life table with offspring sex ratio dependent on female age. Option G: Estimate SE of any sample data using bootstrap. If you need to learn the data format, please download "How to use TWOSEX" from http://140.120.197.173/ecology/. If you need help, please send e-mail to hsinchi@dragon.nchu.edu.tw or				
v(x) SASD SAD Results L A2a Survival to x stage Survives stage x SSD	cnuou4@gmail.com.				
Stage mortality Stage survival Cal. ratio	not dare that they are difficult _Seneca	10			
Tailed Ro Tailed r q(x,j) F(r)	Lewontin Ref. P Author 8/12/2017 10:20:10 AM 8/12/2017 10:20:10 AM				
Basic results Net repr. rate (Ro) =	Adult m(x) Adult 1(x) m(x)+preA l(x)+preA Prof. Dr. Hsin Chi Department of Plant Production and Technologies, Faculty of Agricultural	1			
Intrinsic rate (r) = Finite rate =	Stage means Outputs All results Note well!				
Mean gen. time (T) =	Quit this program				

Population parameters of *H. illucens* reared on artificial diet at 10, 19, 28, 34, and 40 °C estimated by the paired bootstrap test method

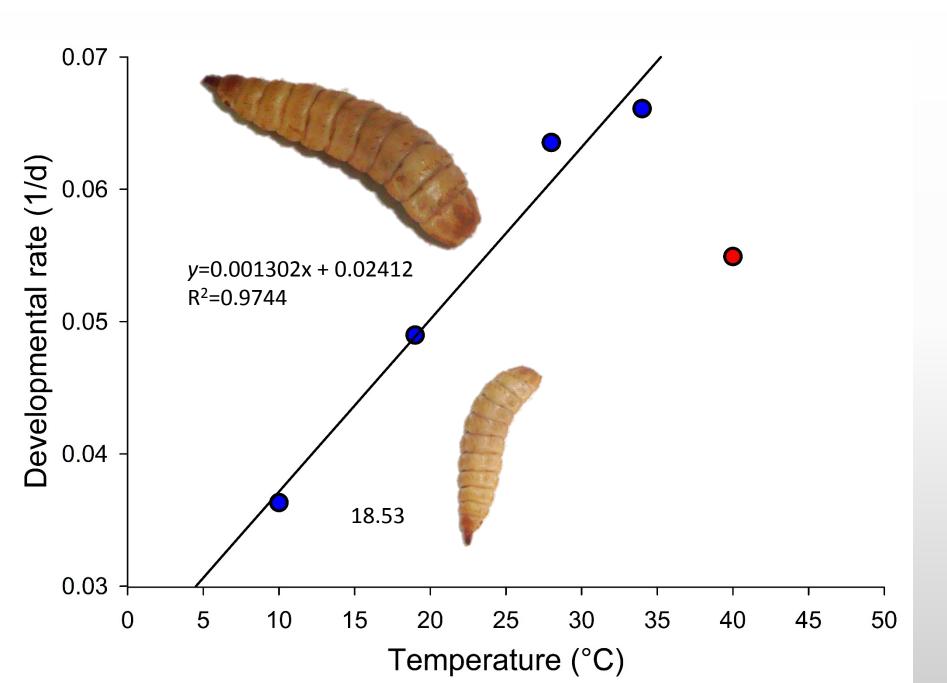

Population parameter	10	19	28	34	40
	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
Intrinsic rate of increase	0.040± 0.008	0.097± 0.004	0.085 ± 0.005	0.096± 0.006	0.079± 0.004
(r) (day⁻¹)					
Finite rate of increase λ	1.041± 0.009	1.102± 0.005	1.088± 0.006	1.101± 0.007	1.082± 0.004
(day ⁻¹)					
Net reproduction rate	18.06± 11.31	244.89 ± 40.279	213.88± 39.804	382.07 ± 51.434	342.9± 51.563
(R ₀) (offspring)	С	а	b	а	а
Mean generation time	71.846± 6.886	56.541± 1.951	63.039± 3.498	61.434 ± 3.998	73.632± 3.545
(T) (day)				*	

Stage-specific duration (days) of H. illucens reared in artificial diet at 10, 19, 28, 34, and 40 °C


	10	19	28	34	40
Stage	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE	Mean ± SE
Larvae	27.54 ± 1.67	20.42±0.294	15.74± 0.188	15.13±0.3	18.21±0.213
	а	b	е	е	С
Prepupae	22.62 ± 4.56	40.96±4.201	53.64±5.909	60.6 ±4.487	66±5.255
Pupae	14.17 ± 1.12	12.32±0.299	12.32±0.252	11.37±0.293	14.97 ±0.327
Fecundity (eggs/female)	-	499.78± 65.019	578.05±77.653	707.54±69.866	762 ±78.762


Age-stage-specific survival rate (S_{xj}) of *H. illucens* larva after temperature

Age-stage survival rate (S_{xj}) of *H. illucens*, diapaused and non diapaused individuals included



Age-specific survival rate (I_x) individually reared, diapaused and non diapaused individuals included

At 10 °C only 2 individuals were females (n=12) and at 34°C 54 were females (n=94), some females were able to lay eggs two times during its adult life span


Temperature (°C)	Male	Female	Total
10	10	2	12
19	42	49	91
28	40	37	77
34	40	54 40 produce offspring 7 lay eggs two times	94
40	41	45 34 produce offspring 7 lay eggs two times	86

Under construction

Version 4

Up next...DYMEX model

Main findings

- We demonstrated that only a five days exposure to different temperature will influence *H. illucens* life history
- Females are capable to lay eggs two times during its adult life span under favorable conditions.

Conclusions

- The experimental method offers the rapid development of DYMEX models, and avoids many of the pitfalls of using constant temperature development rate studies.
- Additional research is needed to address the causes of diapause initiation and termination
- This study provides new information on oviposition of *H. illucens* exposed to different temperatures and demonstrates the effective use of temperature transfers in this insect.
- The results will be useful in improving current methods of *H. illucens* rearing under controlled conditions.

Special thanks!!

Dirty job

and a

