

Predicting the potential distribution in China of *Euwallacea fornicatus* (Eichhoff) under current and future climate conditions

Master: Xuezhen Ge Supervisor: Shixiang Zong

Beijing Key Laboratory for Forest Pest Control **Beijing Forestry University, Beijing, China** Email: xuezhenge@bjfu.edu.cn

Background

1.1 Damage caused by E. fornicatus

- Severely damaged in America, Vietnam, China.
- Looks to be a major problem in urban forests, commercial food, and forests once it gets there.

1.2 Climate change

Global climate warming — an indisputable fact

IPCC AR5 (September 2013)	Relative to the period 1986-2005, the global mean surface air temperature will rise 0.3~0.7 °C in 2016-2035, 0.3~4.8 °C by the end of the 21st century.	
COP20: UN Climate Change Conference in Lima (December 2014)	By the end of the 21 st century, , the global mean surface air temperature of China will rise 1.3~5.0 °C, which is above the global average.	
	(The 3rd National Assessment of Climate change)	
COP21: UN Climate Change Conference in Paris (December 2015)	Every country published its plan to reduce emissions, in order to control the global temperature rise within 2 °C.	
COP22: UN Climate Change Conference in Marrakech	In 2011-2015, this period is the world's warmest five years on record, the average temperature is 0.57 °C higher than the period of 1961-1990.	

1.3 Climate change impacts on forest pests

- Distribution: range of potential distribution...
- > **Development:** occurrence period, generations...
- Intraspecific and interspecific competitions: population quantity, population density...
- Relationship with hosts: hosts preference, synchronicity with hosts...

Aim of Our Research

- Use CLIMEX 4.0 and ArcGIS10.2 to predict the potential distribution of *E. fornicatus* in China under the current and future climate conditions.
 - Provide a reference and guide to facilitate its control in China.
- Discuss the climate change impacts on the potential distribution of the pest.

 Serve as an example of the study on the climate change impacts on forest pests in China.

Research Method

2

Current Climate Data (1981-2010)	 Data source China Surface Climate Monthly Standard Values dataset (1866 meteorological stations) Data process Select the related meteorological data Interpolate into high resolution data-8km*8km (ANUSPLIN) Sort the data format into CLIMEX requires 		
Future Climate Data (2011-2040)	 Data source Coupled Model Intercomparison Project phase 5 (CMIP5) (CSIRO-Mk3-6-0, RCP8.5) 		
	 Data process (Same as before) 		
	FCD: Future Climate Data		
$FCD=CCD+ \triangle SCD$	CCD: Current Climate Data		
	\triangle SCD: Change value of simulated climate data		
	D SFCD: Simulated future climate data		
	SHUD: Simulated historical climate data 9		

Supplementary Information

(2) Select appropriate model

Supplementary Information

(2) Select appropriate model

Distribution of *Euwallacea fornicatus*

Research Results

3.1 Sensitivity analysis of CLIMEX parameters

3

Fig. 1. Sensitivity analysis of the selected parameters in CLIMEX for *E. fornicatus* as change in average EI value.

Temperature-related parameters

• Negative correlation-DV0

(Lower temperature threshold)

 Positive correlation-DV1 (Lower optimum temperature)

Mositure-related parameters

- Negative correlation-SM0, SM1 (SM0-Lower soil moisture threshold) (SM1-Lower optimal soil moisture)
 - Positive correlation-SM2, SM3
 (SM2-Upper optimal soil moisture)
 (SM2-Upper soil moisture threshold)

3.2 Driving variables

Fig. 2. Limiting distribution maps of four different conditions.

- CS-Northeast China and Inner Mongolia
- PDD & CS-Northwest China
- TI-Tibet and Qinghai
- MI-central Xinjiang and western Inner Mongolia

3.3 Potential distribution under two climate conditions

Mainly located in southern China

Current-3.76 million km2, 39.1% of the total area of mainland China; Future-4.16 million km2, or 43.4% of the total mainland area.

Similar distributed range, some big changes in local regions.

Fig. 4. Potential distribution for E. fornicatus under the current climate (1981–2010).

Fig. 5. Potential distribution for *E. fornicatus* under the future climate (2011-2040). 16

3.4 Distributions' comparison under two climate conditions

- Area: Main change predicted is an increase in highly favourable habitat.
- Changes of climate favourability are significant in several provinces.
- Favourability over most of the potential distribution is projected to increase.
 El values may increase by 2~5 units on average (El difference: -2.7~15.5)

(1981-2010) and future (2011-2040) conditions

in China.

Fig. 6. Area changes of different ranges of EI value in different provinces for *E. fornicatus* under the current and future conditions.

4

Discussion

Change of climate data mainly showed in Temperature

4

Discussion

- **Boundary A (purple line):** divided north and northwest regions approximately by the 400mm isohyet.
- Boundary B (yellow line): divided south and North Region mainly by isothermal line of 0°C in January and 800mm isohyet.
- **Boundary C (red line):** separates the Qinghai-Tibet Region from the other three regions, mainly divided by terrain.

Focus of Future Research

What we have done up to now?

5

Entomologia Experimentalis et Ap	Bulletin of Entomological Research, Page 1 c PLOS ONE © Cambridge University Press 2015	SCIE	ENTIFIC Reports
Are And sce	Areas of po a of <i>Dendro</i> b extreme I S.Y. He ¹ +, X.Z. (RESEARCH ARTICLE OPEN Potential C Rhynchoph Different (ved: 30 August 2016 pted: 28 March 2017 shed online: 19 April 2017 Xuezhen Ge ¹ , Shany	Predicting the potential distribution in China of <i>Euwallacea</i> <i>fornicates</i> (Eichhoff) under current and future climate conditions

- Ge, X., Jiang, C., Chen, L., Qiu, S., Zhao, Y., & Wang, T., et al. (2017). Predicting the potential distribution in china of *Euwallacea fornicatus* (Eichhoff) under current and future climate conditions. Scientific Reports, 7(1).
- 2. Ge, X., He, S., Wang, T., Yan, W., & Zong, S. (2015). Potential distribution predicted for *Rhynchophorus ferrugineus* in china under different climate warming scenarios. **Plos One**, 10(10), e0141111.
- **3. Ge, X.,** Zong, S., He, S., Liu, Y., & Kong, X. (2015). Areas of china predicted to have a suitable climate for *Anoplophora chinensis* under a climate-warming scenario. **Entomologia Experimentalis et Applicata**, 153(3), 256-265.
- He, S., Ge, X., Wang, T., Wen, J., & Zong, S. (2015). Areas of potential suitability and survival of *Dendroctonus valens* in china under extreme climate warming scenario. Bulletin of Entomological Research, 105(4), 477. (Co-first author)
- 5. Ge, X., Yao, G., Luo, Y., Wang, T., He S., & Zong, S. (2013). The influence of varied temperature on adult occurrence period of *Holcocerus hippophaecolus*. Plant Protection, 39(4), 10-15. (Chinese)
- He, S., Luo, Y., Wen, J., Zhao, Y. & Zong, S. (2012). Influence of climate warming on overwintering behaviour of the larva of *Dendrolimus tabulaeformis*. Chinese Bulletin of Entomology, 49(5), 1231-1242. (Chinese)
- He, S., Wen, J., Luo, Y., Zong, S, Zhao, Y. & Han, J. (2012). The predicted geographical distribution of *Bursaphelenchus xylophilus* in China under climate warming. Chinese Bulletin of Entomology, 49(1), 236-243. (Chinese)

What we want to do in the future?

www.globalissues.org

(1) Increased CO₂ emission is the main reason lead to global climate warming.

(2) Forest plays an important role in reducing the CO_2 concentration– Carbon Sink.

(3) Will the damage of pests induce the increase of CO_2 concentration ? What's the proportion?

Eg. In 2008, it was estimated that the cumulative impact of *Dendroctonus ponderosae* out-break in the affected region during 2000–2020 will be **270 mega-tonnes (Mt) carbon**, which is equal to the amount greenhouse gases absorbed by all the trees in Canada during the last 10 years.

(Kurz. WA *et al.*, 2008)

(4) How much the contribution that the control of pine moths to CO_2 reduction?

Dendrolimus superans Inner Mongolia

Dendrolimus houi Puer, Yunnan

Acknowledgments

Supervisor: Prof. Shixiang Zong

Thanks to

- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Chinses Academy of Forestry, Beijing, China.
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
- Forest pest control station of Jianping, Liaoning, China

Thank you for your time and attention Welcome to BJFU!

