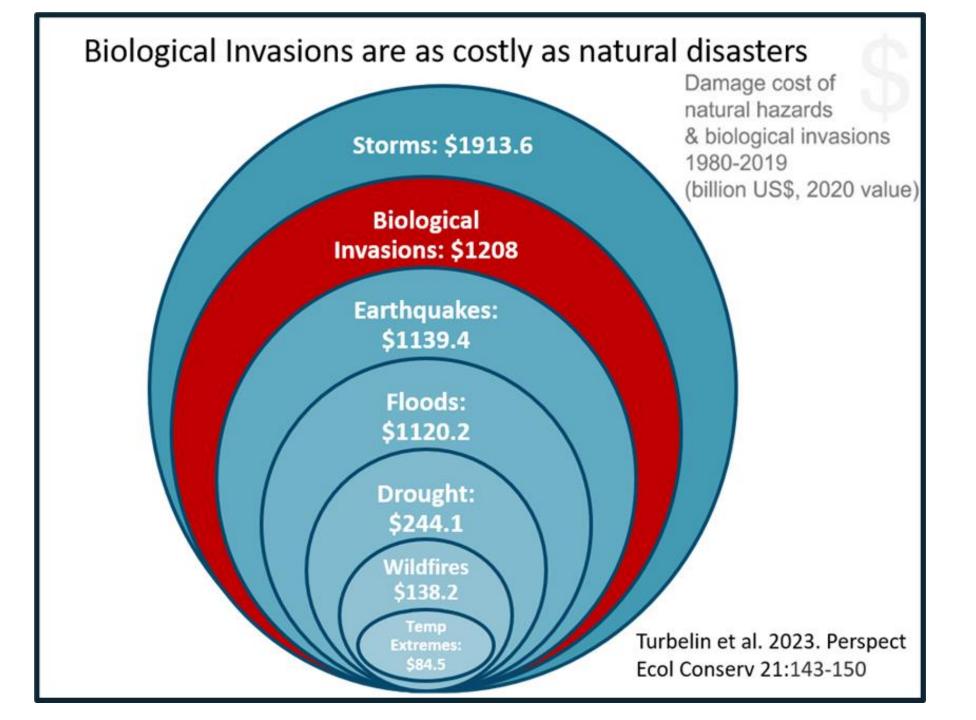
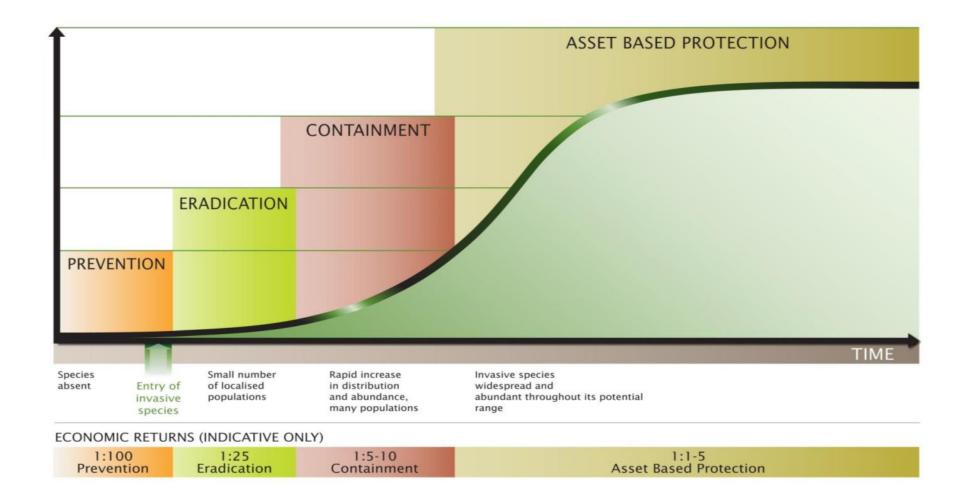
Quantitative Horizon Scanning for Invasive Pests

Joseph Stinziano joseph.stinziano@inspection.gc.ca


Wood Boring Beetles: Wanying Zheng, Megan Abergel, Martin Damus

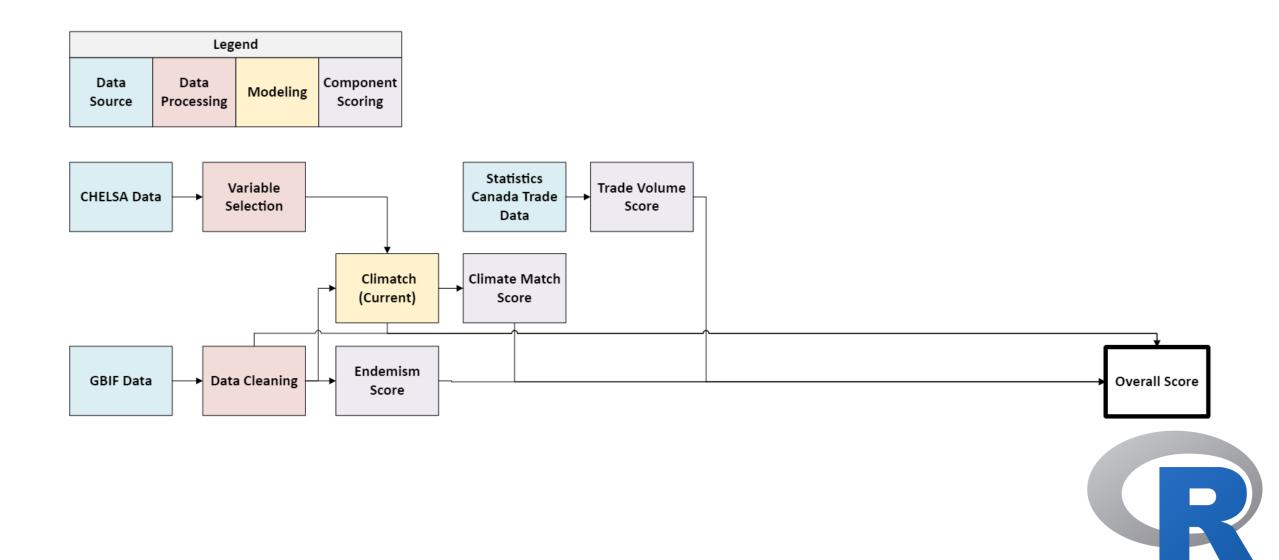

Invasive Grasses: Wanying Zheng, Alexandre Blain, Karen Castro

Plant Health Science Directorate Canadian Food Inspection Agency

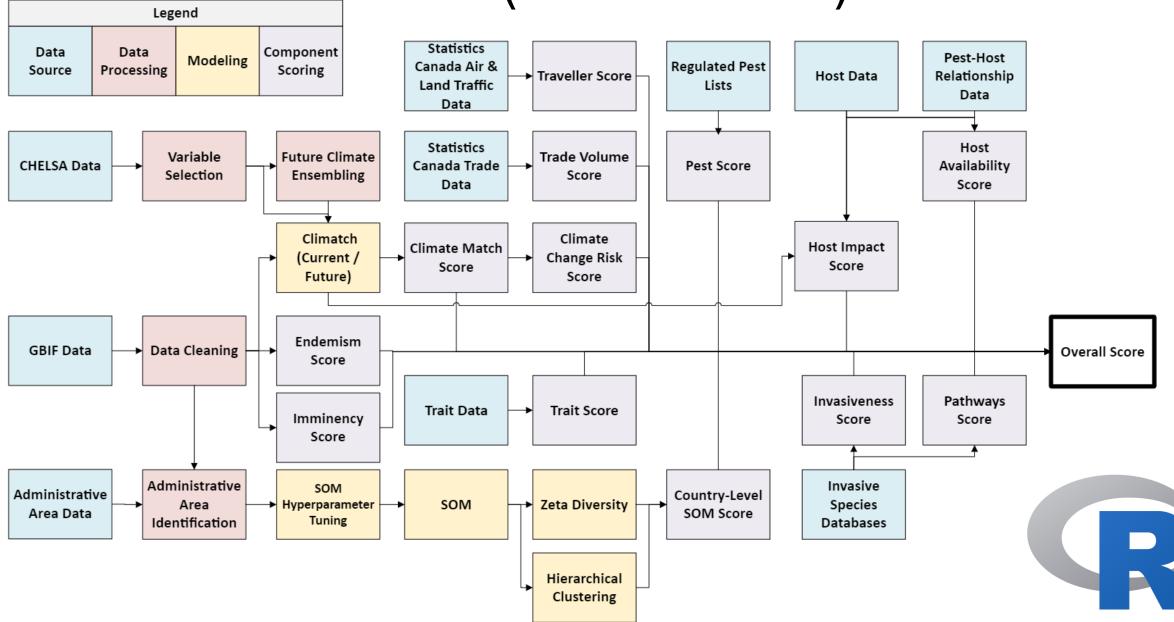


Agence canadienne d'inspection des aliments

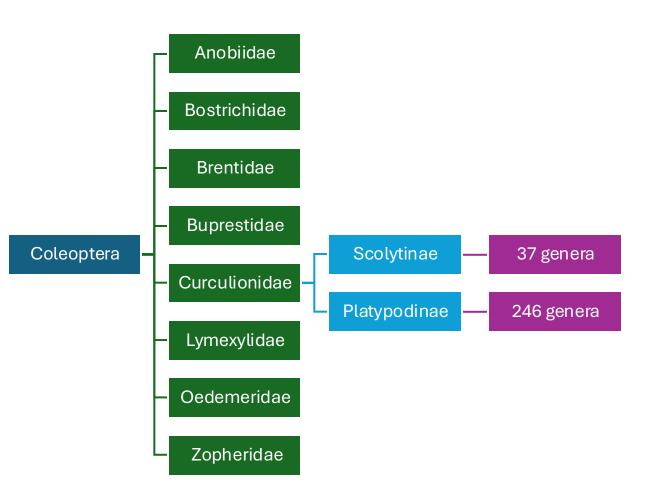
Prevention is the most cost-effective defense



What is quantitative horizon scanning?


- A data-intensive, systematic search to identify potential emerging threats
 - Objective to identify pests early and often to be able to prevent, and prepare immediate responses for, novel pests
 - Identify target taxa, risk criteria, and data sources
- Proactive identification of potential pests before we would typically consider regulating
- Identify gaps in biosecurity
- Many existing horizon scan methods are time intensive, do not produce readily actionable results for NPPOs, or are non-quantitative

Method (where we started in 2022)


Method (Current State)

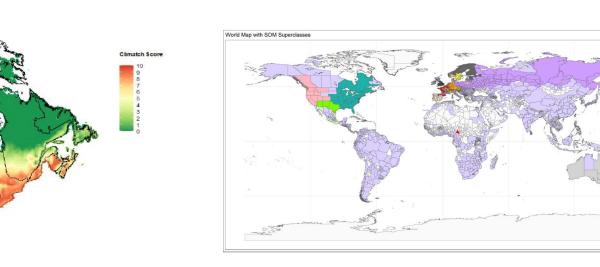
Taxonomic Inputs

- Scan 1: Wood-boring Beetles

 Note the taxonomic grouping has some off-target species (i.e. nonwood-boring)
- Scan 2: Invasive Grasses • Poaceae

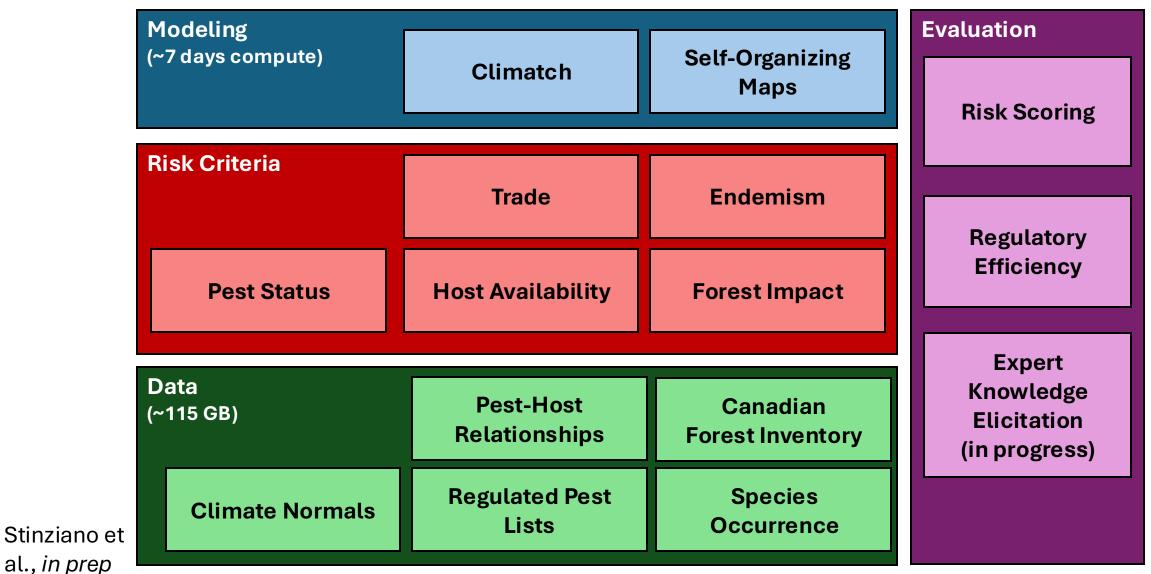
Modeling – 2 Model Ensemble

• High throughput climate matching with climatchR

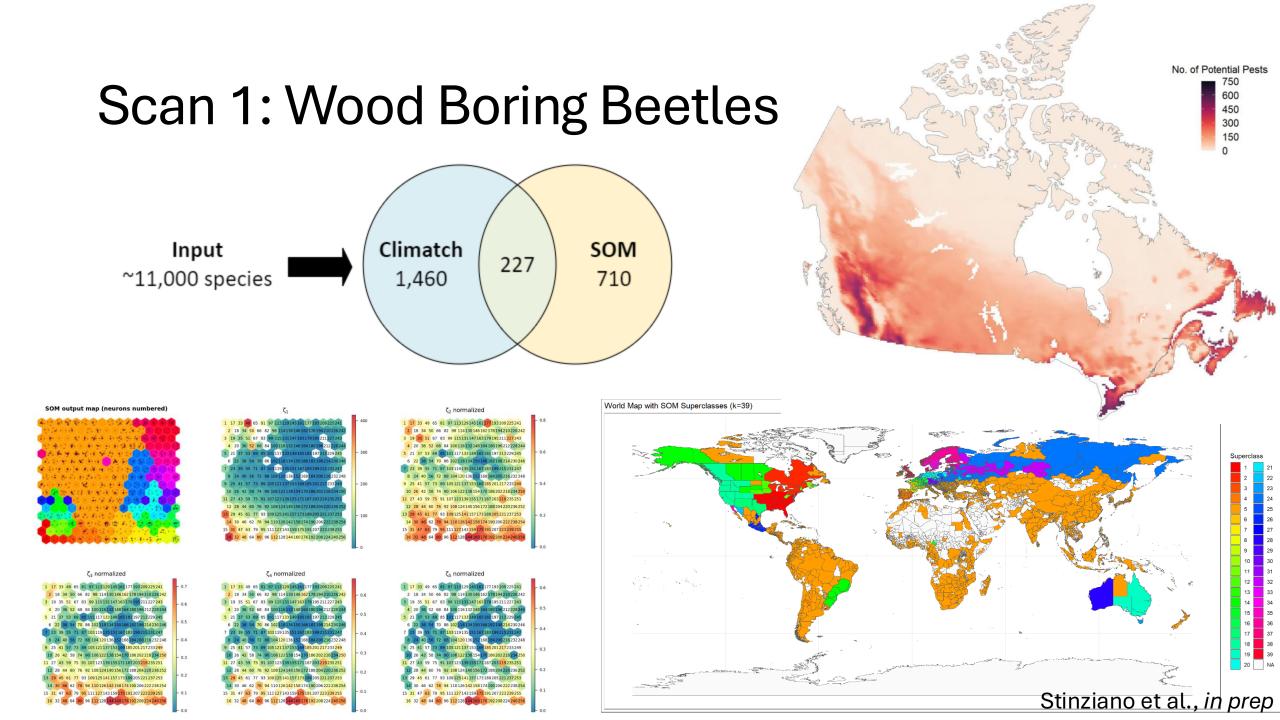

Stinziano et al., *in prep*

- Uses the CLIMATE Euclidean distance based matching algorithm
- Self-organizing maps group regions based on similar groupings of species

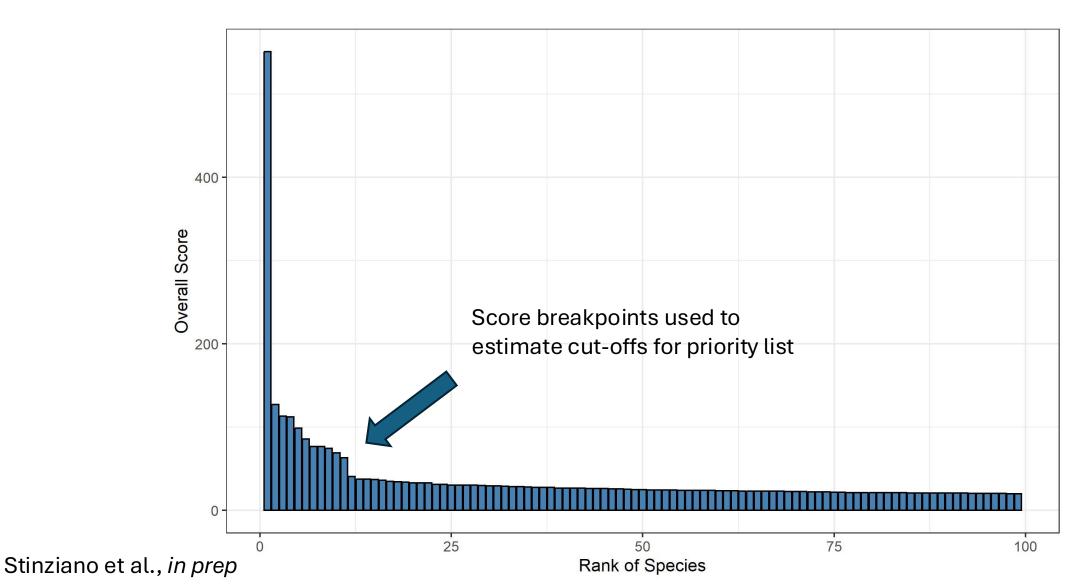
• Cell colours indicate clusters


Québec, Maine, Ontario, Wisconsin, Vermont, Michigan

Scoring


- Each risk criterion calculated as a score between 0 and 1, rescaled to between 1 and 5

 For climate change risk between –1 and 0, rescaled to between 0 and 1
- Overall Score = \prod (Component Scores)
 - \circ 7 metrics for wood boring beetles
 - Climate suitability, SOM, endemism, pest status, trade volume, host availability, forest impact
 - \circ 11 metrics for invasive grasses
 - Climate suitability, SOM, endemism, pest status, trade volume, invasiveness, climate change risk, traveller volume, imminency, traits, global risk score

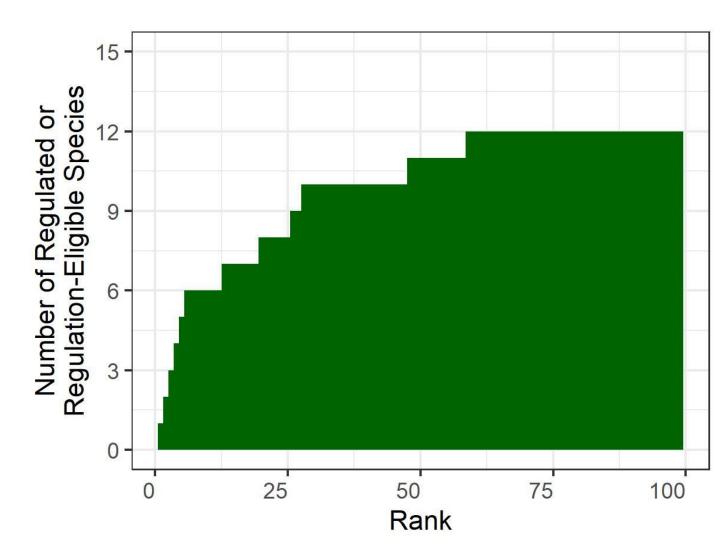

Scan 1: Wood Boring Beetles

al., *in prep*

Scan 1: Wood Boring Beetles

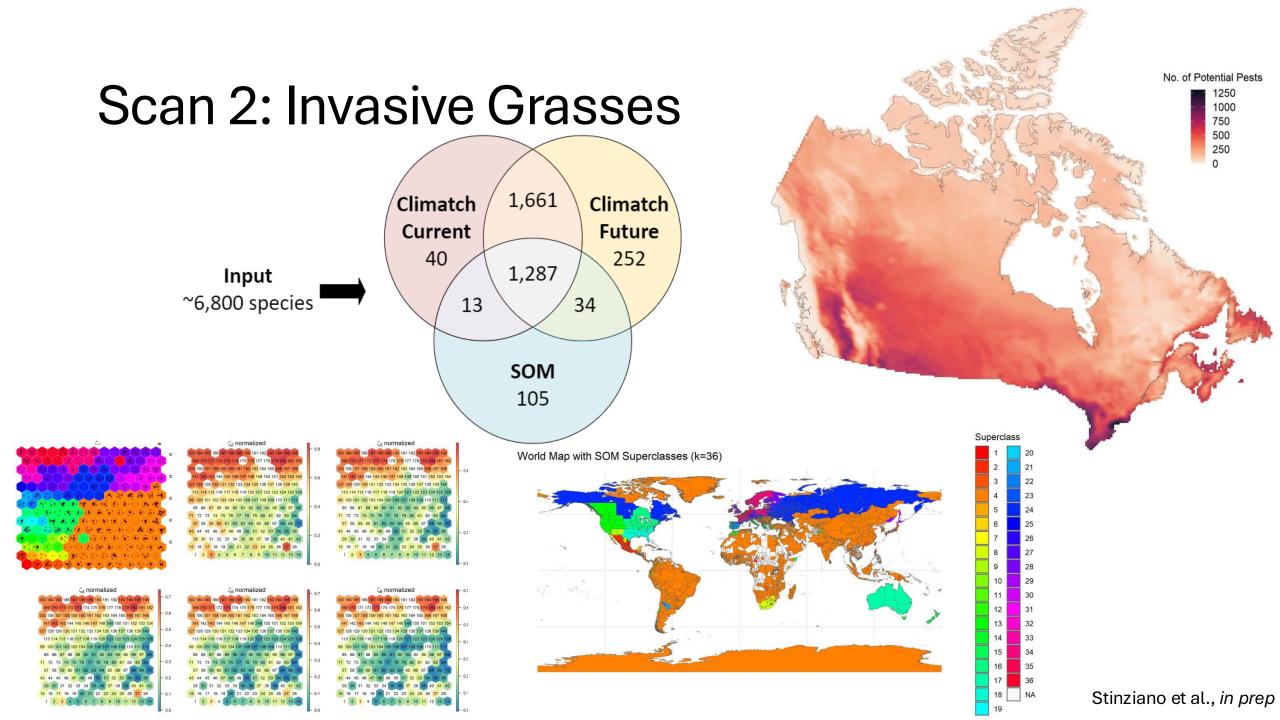
Already regulated Considered for regulation Categorisation in progress ~99.9% reduction in targets

Scan 1: Wood Boring Beetle Shortlist ~

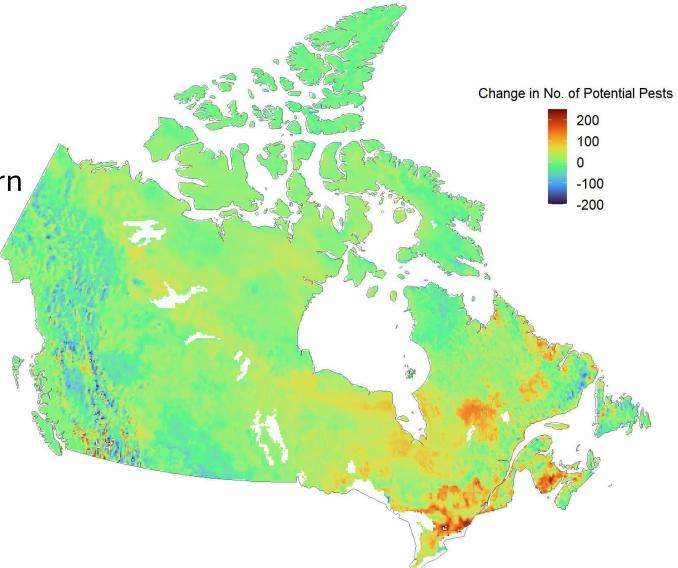

Rank	Species		Scores									
Παιικ	Shecies	SOM	Climatch	Pest	Trade	Host	Impact	Overall				
1	Monochamus sutor	NA	4.08	5	3.82	1.47	2.91	551				
2	Monochamus urussovii	NA	3.34	5	1.71	1.47	2.50	127				
3	lps typographus	1.08	2.52	5	1.33	1.59	2.64	113				
4	Hylesinus varius	1.51	2.93	5	3.28	NA	NA	112				
5	Monochamus galloprovincialis	1.12	2.82	5	1.37	1.24	2.26	99				
6	Anoplophora glabripennis	NA	1.23	5	3.74	2.76	1.07	85				
7	Trypodendron signatum	1.54	2.28	5	3.25	NA	NA	77				
8	Trachys minutus	1.08	2.55	5	3.33	NA	NA	76				
9	Callidium aeneum	1.28	2.57	5	3.22	NA	NA	74				
10	Pityogenes bidentatus	1.34	2.26	5	3.27	NA	NA	69				
11	Ips sexdentatus	NA	2.21	5	1.31	1.47	2.16	63				
12	Agapanthia villosoviridescens	1.23	2.76	5	1.38	NA	NA	40				
13	Anoplophora chinensis	NA	1.02	5	1.74	3.35	1.00	37				

Stinziano et al., in prep

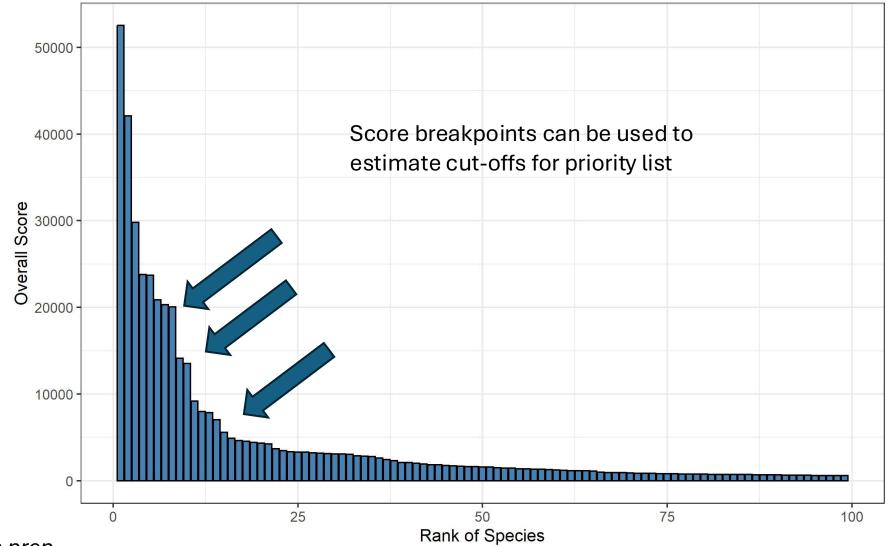
Scan 1: Wood Boring Beetles


Regulatory efficiency:

 Ranks 1 – 12: 50%
 Ranks 13 – 28: 25%
 Ranks 29 – 60: 6.25%


Scan 2: Invasive Grasses

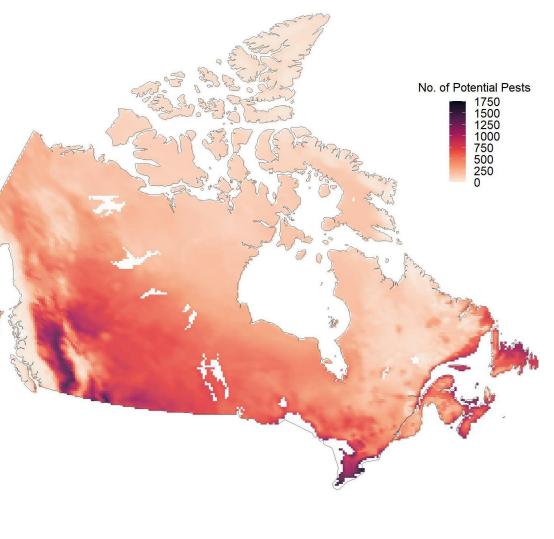
Modelin (~10 days compute	Clima	Climatch 1981-2010 Climatch 2011-2040 Self-Organizing Maps									
Risk Cri	teria										
Im	minency	Cli	mate Change Risk		Trade		Endemism	Γ	Regulatory Efficiency		
	Traits	F	Pest Status	(in progre		(in progress)					
									Expert		
Data (~75 GB)			e Climate Normals		obal Compendiu Weeds	m of	of International Air Visitors		Knowledge Elicitation (planned)		
	Internation Vehicle Traf		Invasive Spe Database		Regulated P Lists	est	Species Occurrence				


Scan 2: Invasive Grasses

- Patchiness in the impact of climate change on climate suitability for potentially invasive grasses
- Risk likely to increase in central/eastern Canada and decline in the west.

Stinziano et al., *in prep*

Scan 2: Invasive Grasses


Stinziano et al., *in prep*

Scan 2: Invasive Grasses Shortlist

Rank	Species	Score											
Νατικ	Species	SOM	Climate	Climate Change	Trait	Invasiveness	Trade	Travel	Endemism	Global Risk	Overall		
1	Paspalum dilatatum	1.49	1.15	1.00	3.87	2.33	4.25	4.50	1.69	4.20	52517		
2	Oryza sativa	1.33	1.10	0.99	3.63	2.33	4.12	4.24	1.86	4.20	42086		
3	Pennisetum setaceum	1.40	1.09	0.99	4.22	5.00	3.16	3.75	1.26	2.51	29794		
4	Paspalum distichum	1.47	1.08	1.00	1.87	3.00	4.08	4.39	1.71	3.51	23778		
5	Paspalum urvillei	1.20	1.01	1.00	3.90	3.00	3.86	3.57	1.43	3.40	23723		
6	Pennisetum villosum	1.40	1.06	0.99	5.00	3.00	3.09	3.57	1.14	3.01	20888		
7	Paspalum vaginatum	1.20	NA	NA	5.00	2.08	3.42	3.98	1.66	2.89	20318		
8	Pennisetum glaucum	1.37	1.01	1.00	4.40	3.00	3.78	3.53	1.34	2.44	20035		
9	Pennisetum alopecuroides	1.30	1.11	0.99	3.20	3.00	3.23	3.68	1.19	2.92	14104		
10	Paspalum conjugatum	1.30	NA	NA	2.07	2.33	3.92	3.73	1.74	3.40	13535		
11	Paspalum notatum	1.25	1.01	1.00	1.20	3.00	3.99	3.98	1.50	3.40	9188		

Conclusions

- Quantitative horizon scanning can:
 - Provide priority species for regulatory review as well as a rapid risk assessment to support full risk assessments
 - $\,\circ\,$ Be used to identify gaps in biosecurity for a given $^{\scriptscriptstyle 2}$ taxonomic scope
 - Identify areas that face increased pest risks due to climate change
- Key caveats
 - $\,\circ\,$ Scale of quantitative horizon scanning means that there are inevitable errors
 - $\,\circ\,$ Availability and accessibility of data represent key limitations
 - e.g. host data availability was very low for beetles
 - $\,\circ\,$ Represents a 'first pass' in identifying biosecurity threats for further review

Next Steps

• Euphresco Project (Topic 2024-D-462 Quantitative horizon scanning using climatic modelling to identify species with the potential to become plant pests)

 \odot Work starting Winter 2025

 \odot Still time to sign up/participate - contact your Euphresco coordinator

Climate Variables

• Climate Data

$\odot\, \text{CHELSA}\, 1981\text{--}2010\, \&\, 2011\text{--}2040$

- Variable reduction
 - Bio5 (temperature)
 - Bio6 (temperature)
 - Bio16 (precipitation)
 - Bio17 (precipitation)
 - Bio18 (precipitation)
 - Bio19 (precipitation)

	bio1	bio10	bio11	bio12	bio13	bio14	bio16	bio17	bio18	bio19	bio5	bio6	bio8	bio9	_
bio1	1.00	0.95	0.97	0.30	0.36		0.36			0.23	0.93	0.96	0.89	0.92	
bio10	0.95	1.00	0.85		0,23						0.99	0.82	0.94	0.82	- (
bio11	0.97	0.85	1.00	0.39	0.44		0.44			0.32	0.82	1.00	0.79	0.95	- 0
bio12	0.30		0.39	1.00	0.91	0.74	0.93	0.77	0.78	0.78		0.43		0.29	
bio13	0.36	0.23	0.44	0.91	1.00	0.45	0.99	0.48	0.74	0.64		0.47	0,30	0.33	- (
bio14				0.74	0.45	1.00	0.49	0.99	0.60	0.63					- 0
bio16	0.36		0.44	0.93	0.99	0.49	1.00	0.52	0.75	0.67		0.47	0.29	0.32	
bio17				0.77	0.48	0.99	0.52	1.00	0.62	0.66					-
bio18				0.78	0.74	0.60	0.75	0.62	1.00	0.34			0.22		
bio19	0.23		0.32	0.78	0.64	0.63	0.67	0.66	0.34	1.00		0.37		0.29	
bio5	0.93	0.99	0.82								1.00	0.79	0.93	0.80	
bio6	0.96	0.82	1.00	0.43	0.47		0.47			0.37	0.79	1.00	0.77	0.94	
bio8	0.89	0.94	0.79	0,23	0.30		0.29				0.93	0.77	1.00	0.67	
bio9	0.92	0.82	0.95	0.29	0.33		0.32			0.29	0.80	0.94	0.67	1.00	

	bio16	bio17	bio18	bio19	bio5	bio6	_
bio16	1.00	0.52	0.75	0.67		0.47	
bio17	0.52	1.00	0.62	0.66			-
bio18	0.75	0.62	1.00	0.34			-
bio19	0.67	0.66	0.34	1.00		0.37	-
bio5					1.00	0.79	
bio6	0.47			0.37	0.79	1.00	

Data Sources

- GBIF: species occurrence data
- CHELSA: current and future climatologies
- Statistics Canada: Canadian import volumes; international vehicular and air traffic
- IPPC: country-level pest lists
- EPPO: pest-host relationships
- Natural Resources Canada: forest inventory
- Global Compendium of Weeds: global risk scores
- TRY Database: invasive plant traits
- Plants of the World Online: plants already in Canada
- Bosquet et al. 2017 Cerambycidae of Canada & Alaska: wood-boring beetles already in Canada
- GRIIS/GRIN/GIASIP/GISD/ISC: pathways and invasiveness